
CS 535: Complexity Theory, Fall 2023

Homework 9
Due: 11:59PM, Tuesday, December 5, 2023.

Reminder. Homework must be typeset with LATEX preferred. Make sure you understand
the course collaboration and honesty policy before beginning this assignment. Collaboration
is permitted, but you must write the solutions by yourself without assistance. You must
also identify your collaborators. Assignments missing a collaboration statement will not be
accepted. Getting solutions from outside sources such as the Web or students not enrolled
in the class is strictly forbidden.

Problem 1 (Circuit Lower Bounds from Derandomization). Many complexity theorists
believe that BPP = P, but we’re quite far from proving this. A necessary condition to
get to this point would be to derandomize the coRP polynomial identity testing problem,
defined as follows:

PITZ = {C | Arithmetic circuit C computes the zero polynomial over Z}.

In this problem, you’ll show that even the weak derandomization PITZ ∈ NP would yield
much stronger circuit lower bounds than what are currently known, either for Boolean circuits
computing languages in NEXP, or for arithmetic circuits computing the matrix permanent.

(a) Show that if X ∈ {0, 1}n×n, then

perm(X) =
n∑

i=1

x1,i perm(X1,i).

Here, x1,i is the entry in the first row and i’th column of X, and X1,i is the submatrix
obtained by deleting the first row and the i’th column of X. (2 points)

(b) Part (a) shows that the matrix permanent is downward self-reducible. This has the
following useful consequence for verifying that a circuit C computes the permanent.
An arithmetic circuit C : {0, 1}n×n → {0, 1} computes the n× n matrix permanent if
and only if, for every k = 1, . . . , n, we have C̃k(X) := C(X | In−k)−

∑k
i=1 x1,kC(X1,k |

In−k+1) ≡ 0, as integer polynomials overX1,1, . . . , Xk,k, where In−k is the (n−k)×(n−k)
identity matrix and

(X | In−k) :=

(
X 0
0 In−k

)
.

That is, given an arithmetic circuit C on n2 variables, one can efficiently compute
a sequence of arithmetic circuits C̃1, . . . , C̃n such that C computes the (n × n) 0/1-
permanent if and only if C̃1, . . . , C̃n ∈ PITZ,

Use the discussion above to show that if PITZ ∈ NP and the 0/1 matrix permanent is
computed by polynomial size arithmetic circuits, then P#P ⊆ NP. (3 points)
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(c) (*Individual Review*: No collaboration allowed on this part only) Show that if NE :=
NTIME(2O(n)) ⊆ P/poly, then there exists a constant c such that NP ⊆ SIZE(nc).
Hint: You can use without proof the fact that every problem in NP reduces to
NESAT = {⟨M,x, t⟩ | Deterministic TM accepts x within t steps} in linear time. (3
points)

(d) Show that the following three statements cannot simultaneously be true:

� PITZ ∈ NP

� The 0/1 matrix permanent has poly-size arithmetic circuits

� NE ⊆ P/poly.

Hint: Use the result of Homework 7, Problem 1(c). (3 points)

Problem 2 (Perfect Interactive Proofs). For parameters c, s ≥ 0, define the class MAc,s to
consist of Merlin-Arthur interactive proofs with completeness probability c and soundness
probability s. That is, a language L ∈ MAc,s if there exists a probabilistic poly-time verifier
V and a polynomial m(n) such that

x ∈ L =⇒ ∃u ∈ {0, 1}m(|x|) Pr[V (x, u) = 1] ≥ c

x /∈ L =⇒ ∀u ∈ {0, 1}m(|x|) Pr[V (x, u) = 1] ≤ s.

Recall that in class we defined MA = MA2/3,1/3.

(a) Prove that MA1,1/3 = MA. That is, we may assume Merlin-Arthur proofs have per-
fect completeness probability. Hint: Modify the proof of the Sipser-Gács-Lautemann
Theorem (Theorem 7.15). You can use the statements of Claims 1 and 2 from that
proof in your solution without reproving them. (6 points)

(b) Prove that MA2/3,0 = NP. That is, Merlin-Arthur proofs with perfect soundness are
no more powerful than deterministic proofs. (3 points)

(c) (*Bonus*) Prove the same relationships for general interactive proofs. That is, show
that IP1,1/3 = IP and IP2/3,0 = NP.

The following problems didn’t make the cut for this assignment, but are nevertheless
useful to think about!

Problem 3. (Bonus) Prove that ⊕P⊕P = ⊕P.

Problem 4 (Bonus: Counting k-Colorings). Let G = ([n], E) be a graph on n vertices. A
k-coloring of G is a vector of colors (c1, . . . , cn) ∈ [k]n such that for every edge (i, j) ∈ E, we
have ci ̸= cj.
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(a) Show that there is a polynomial p with degree poly(k, n) and rational coefficients such
that the number of k-colorings of a graph G is given by

k∑
c1=1

k∑
c2=1

. . .
k∑

cn=1

p(c1, . . . , cn).

Hint: https://en.wikipedia.org/wiki/Lagrange_polynomial.

(b) Modify the sumcheck protocol to show that for every constant k, the language #kCOLD =
{⟨G, t⟩ | G has exactly t k-colorings} ∈ IP.
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