
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 1:

Course Welcome, Turing Machines, Decidability

Reading.

• Arora-Barak § 0, 1.1-1.5, 1.7 (optional), A.1-A.2

1 Logistics

Instructor: Mark Bun
Teaching Fellow: Mandar Juvekar
Course Website: https://cs-people.bu.edu/mbun/courses/535_F23

• Prerequisites: CS 332 (undergrad Theory of Computation) and “mathematical maturity”

• Piazza: All announcements here. Ask me for the entry code.

• Gradescope: All assignments to be submitted here. Entry code ZWZGPW.

• Assignments: Weekly homework due Tuesday (11:59 PM). In-class midterm and final. Term paper.
Participation: weekly reading responses and discussion attendance.

• Collaboration Policy: You can discuss (most) homework problems with up to 3 other students, but you
must acknowledge your collaborators and write solutions by yourself. Please read, sign, and submit
to Gradescope the course collaboration policy.

2 What’s this course about?

At the risk of a bit of oversimplification, the goal of computational complexity theory is to address the
following question:

What resources
(3)

are needed to solve
(2)

computational problems
(1)

?

To answer this question scientifically, we of course need to define what we mean by each of these terms.

(1) For simplicity, we will usually focus on decision problems, i.e., computational problems with yes/no
answers, over inputs presented as bit strings. More precisely, solving a decision problem corresponds
to:

• Evaluating a Boolean function f : {0, 1}∗ → {0, 1}, or equivalently

1

https://cs-people.bu.edu/mbun/courses/535_F23

• “Deciding” a language L ⊆ {0, 1}∗ defined by the correspondence x ∈ L ⇐⇒ f(x) = 1.

Other types of problems we’ll encounter include search, optimization, approximation, counting, and
sampling.

(2) We will be able to talk precisely about the computational processes used to solve problems via abstract
models of computation. Typical (and some not-so-typical) models include:

• Turing machines (TMs)

• RAM machines

• Boolean circuits

• Arithmetic circuits

• Quantum TMs/circuits

• Cellular automata, DNA computing, slime molds, ...

(3) The key feature that distinguishes computational complexity from the related field of computability the-
ory is its focus on quantifying computational costs or resource requirements. These resources include:

• Running time

• Space (memory)

• Nondeterminism

• Circuit size

• Circuit depth

• Randomness

• Parallel time

• Communication/interaction

• Oracle queries

Some of the more specific objectives in complexity theory include:

• Designing efficient algorithms, i.e., finding upper bounds on the resources needed to solve problems.

• Establishing lower bounds, i.e., proving that some problems are inherently difficult to solve.

• Identifying relationships between different computational problems and between the resources needed
to solve them.

Some examples of questions we’d like to answer include:

P
?
= L Can every time-efficient computation be done with small memory?

P
?
= NC Can every time-efficient computation be parallelized?

NP
?
= PCP Can one check a long proof by reading only a small random number of bits?

NP
?
= IP Are interactive conversations more powerful than static proofs?

2

EXP
?
⊆ P/poly Can specialized hardware always be used to compute hard functions?

BPP
?
= P Can every efficient randomized algorithm be derandomized?

So far we (meaning, sixty+ years of complexity theorists) have only been able to answer one of these
questions...though in my opinion it’s the wildest of the bunch.

3 Multi-tape Turing machines

The primary model of computation we’ll work with in this class is the k-tape Turing machine.

Initially: The input is written on the input tape, and all other tapes are blank. The control is in the start state,
denoted qstart. All heads are in the left-most position.

In one step of computation: Based on the current state and the symbols under the read heads,

1. Change symbols under the write heads

2. Move heads (one step left, one step right, or stay)

3. Update state

Computation halts when the control is in a special state qhalt.

More formally, a k-tape TM M is described by a tuple (Γ, Q, δ) where

• Γ is a finite tape alphabet such that 0, 1,□, ▷ ∈ Γ. (Here, □ is the blank symbol and ▷ demarcates the
left end of each tape.)

• Q is a finite state set such that qstart, qhalt ∈ Q.

• δ : Q×Γk−1 → Q×Γk−1×{L, S,R}k is a transition function describing how one step of computation
proceeds.

3

For a Turing machine M and an input x ∈ {0, 1}∗, we define

M(x) =

{
content of the output tape if M halts on input x
⊥ otherwise.

We say that M computes a function f : {0, 1}∗ → {0, 1}∗ if M(x) = f(x) for every x ∈ {0, 1}∗.
In the special case where the codomain of f is just {0, 1}, i.e., f corresponds to a language L ⊆ {0, 1}∗,

we say that M decides the language L if M(x) = 1 ⇐⇒ x ∈ L.

4 The Church-Turing Thesis

The Church-Turing Thesis is an assertion that connects the formal mathematical study of Turing machines
to the real-world explanatory goals of computability and complexity theory. There are (at least) two versions
of the thesis.

Turing machines capture:

1. Our intuitive notion of algorithms

2. Every physically realizable model of computation

The Extended Church-Turing Thesis is the version relevant to computation complexity theory. It’s the
same as the above, but with the stronger assertion that simulation via TMs can be done with at most polynomial overhead.

Note that there are credible challenges to the validity of the Extended Church-Turing Thesis, e.g., from
randomized, parallel, and quantum computation. The statement is much less controversial if we restrict its
scope to deterministic, sequential computation.

Positive evidence for the (Extended) Church-Turing Thesis comes from simulation arguments, which
show how to simulate a powerful model of computation using a seemingly less powerful one. The basic
resources we’ll consider are:

Time Turing machine M runs in time T (n) if for all x ∈ {0, 1}∗, M halts on input x in at most T (|x|)
steps.

Space Turing machine M runs in space S(n) if for all x ∈ {0, 1}∗, M halts on input x while accessing at
most S(|x|) spaces of its work tapes.

Simulation arguments can be used to show the (extraordinary) robustness of the multi-tape TM model.
For instance, the following modifications to the TM model incur at most polynomial increases in time and
space:

1. Assuming the tape alphabet is Γ = {0, 1,□}

2. Taking k = 3 (only one work tape), or even k = 1 read/write tape (taking some care with how to
measure space usage)

3. Pointer access to tape cells (RAM model)

4. Bidirectionally infinite or multi-dimensional tapes

4

5 The Universal TM

Turing’s original paper made the game-changing observation that general-purpose computation is possible.
Underlying this is the basic idea that programs (computing devices) can themselves be represented as data
that is presented as input to other programs.

Specifically, the description of any TM can be encoded as a binary string. The notation we’ll use for this
correspondence is:

α ∈ {0, 1}∗ ↔ TM Mα

⌊M⌋ ∈ {0, 1}∗ ↔ TM M.

The idea of a general-purpose computer is then captured by the Universal TM:

Theorem 1. There exists a Turing machine U such that for all α, x ∈ {0, 1}∗, we have U(α, x) = Mα(x).
Moreover, for all α there exists a constant Cα such that

1. If Mα halts on x in T steps, then U(α, x) halts in at most Cα · T log T steps.

2. If Mα halts on x in space S, then U(α, x) uses space at most Cα · S.

That is, there exists a Turing machine U that can simulate the behavior of any other TM Mα. Moreover,
the simulation is efficient in that it incurs at most logarithmic time and constant space overhead relative to
running the machine Mα itself.

Proof idea. We’ll sketch a proof of the weaker statement that simulation is possible with quadratic time
overhead (i.e., replace T log T in item 1 above with T 2).

On input (α, x), the UTM U first transforms the machine Mα into an equivalent machine M ′
α with a

simpler structure, namely:

1. M ′
α has exactly one work tape, and

2. M ′
α uses tape alphabet Γ = {0, 1,□, ▷}.

This new machine has the property that if Mα runs in time T (n), then M ′
α runs in time O(T (n)2).

Now U simply simulates the execution of M ′
α step-by-step on input x using three work tapes. The

contents of the tapes are as follows:
Work tape 1: Description of the transition function of M ′

α

Work tape 2: Current state of M ′
α

Work tape 3: Content of work tape of M ′
α Output tape: Same as M ′

α.
To simulate one computation step, U does the following:

• Read current symbols from the input tape and work tape 3.

• Traverse work tapes 1 and 2 to determine how to update.

• Traverse work tapes 2 and 3 to perform the update.

For the runtime/space analysis: Observe that simulating each step takes time/space depending on the
contents of work tapes 1 and 2, which are constants depending on M ′

α but not on the input x.

5

6 Undecidability

As a check on the power of Turing machines, and via the Church-Turing Thesis on computation in general,
let us briefly review the idea of uncomputability/undecidability. Some functions cannot be computed by
TMs, even using arbitrary computational resources.

Example 2. Define the language SNA ⊆ {0, 1}∗ by

x ∈ SNA ⇐⇒ Mx(x) does not halt with 1 on its output tape.

The language SNA is undecidable.

Proof. Assume for the sake of contradiction that TM M decides SNA. Then

⌊M⌋ ∈ SNA ⇐⇒ M(⌊M⌋) = 1 (definition of deciding)

⇐⇒ ⌊M⌋ /∈ SNA (definition of SNA),

which is a contradiction.

The language SNA is admittedly contrived. But luckily, it turns out to be useful for showing that other
more natural functions are uncomputable. For example, consider:

HALT = {⟨α, x⟩ | Mα halts on input x}.

We can prove that HALT is also undecidable by a reduction from the undecidable language SNA. That
is, suppose there were a TM MHALT deciding HALT. Then we can use MHALT to construct a new TM MSNA

deciding SNA, a contradiction.
Here’s a description of the new machine MSNA.

On input x:

1. Run MHALT(x, x). If 0, halt and output 1. Else:

2. Use the Universal TM U to compute b = Mx(x).

3. If b = 1, output 0.
If b = 0, output 1.

Next time: Time complexity classes, nondeterminism.

6

	Logistics
	What's this course about?
	Multi-Tape Turing Machine
	The Church-Turing Thesis
	The Universal TM
	Undecidability

