
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 10:

PH via oracles, alternation

Reading.

• Arora-Barak § 5.2, 5.3, 5.5

Last time: NL = coNL, Polynomial Hierarchy

Definition 1. Define
Σp

i = ∃∀∃ . . . QiP

where Qi = ∃ if i is odd and Qi = ∀ if i is even.
Similarly, define

Πp
i = ∀∃∀ . . . QiP

where Qi = ∀ if i is odd and Qi = ∃ if i is even.

It’s helpful to unpack some lower levels of the hierarchy explicitly. For instance, Σp
2 is the class of

languages L such that there exist polynomials p and q and a poly-time TM M such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1.

Definition 2. The polynomial hierarchy is defined as

PH =

∞⋃
i=1

Σp
i =

∞⋃
i=1

Πp
i

Theorem 3. If P = NP, then PH = P.

Proof idea. It suffices to show that if P = NP, then Σp
i ∈ P for every i. We immediately have Σp

1 =
NP = P, and therefore also that coNP = P. Now observe that Σp

2 = ∃∀P = ∃coNP = ∃P = NP =
P. And so on, by induction.

Theorem 4. If for some level i, we have Σp
i ⊆ Πp

i , then PH = Σp
i = Πp

i . (If this happens, we say “PH
collapses to the i’th level.”)

Proof. First observe that if Σp
i ⊆ Πp

i , then Πp
i = coΣp

i ⊆ coΠp
i ⊆ Σp

i , so we actually have the equality
Σp

i = Πp
i .

Now Σp
i+1 = ∃Πp

i = ∃Σp
i = Σp

i = Πp
i and so on.

A widely believed conjecture (generalizing P ̸= NP) is that the polynomial hierarchy does not collapse.
Some more observations:

1

1. Σp
i is closed under poly-time reductions ≤p: That is, if A ≤p B and B ∈ Σp

i , then A ∈ Σp
i .

2. Σp
i has complete problems. For example,

Σi-SAT = {TQBFs of the form ∃x(1)∀x(2) . . . φ(x(1), x(2), . . . , x(i))},

where each x(j) denotes a block of variables, is Σp
i -complete.

A natural question you might ask is: Does PH itself have complete problems? The answer is “probably
not.”

Theorem 5. If PH has a complete problem, then PH collapses.

Proof. Suppose L is PH-complete. Then L ∈ Σp
i for some level i. On the other hand, for every language

A ∈ PH, we have A ≤p L, so A ∈ Σp
i . Hence PH ⊆ Σp

i .

1 PH via Oracles

Recall that for a language A, the class NPA is the class of languages decidable in poly-time by an NTM
with oracle access to A.

Theorem 6. Σp
2 = NPSAT.

Proof. As usual, there are two directions to show.

Σp
2 ⊆ NPSAT. It’s enough to show that the complete problem Σ2-SAT ∈ NPSAT. This is because

NPSAT is closed under poly-time reductions. Recall that

Σ2-SAT = {φ | ∃u∀vφ(u, v) = 1}.

So the following poly-time NTM (with access to a SAT oracle) decides this language:
On input φ:

Nondeterministically guess an assignment b to u
Query the SAT oracle on φ(b, v)
Accept if unsatisfiable (i.e., ∀vφ(b, v) = 1).

NPSAT ⊆ Σp
2 . Let L ∈ NPSAT be decided by a poly-time oracle NTM N running in time T (n). Let

m = T (|x|). As a first attempt, we’d like to use the observation that

x ∈ L ⇐⇒ ∃b1, . . . , bT (|x|)N
SAT(x) accepts on nondeterministic choices b.

However, it’s not really clear how to check the condition on the right, even with a universal quantifier, since
N might issue an adaptive sequence of oracle queries and responses.

To overcome this, we’ll offload more work to the outer existential quantifier by using it to guess the
entire transcript of N ’s computation. Then we’ll use it again, together with the inner universal quantifier, to
check that this transcript is correct.

2

In more detail, observe that

x ∈ L ⇐⇒ ∃C1, . . . , Cm s.t.

C1 = Cstart,

Ci → Ci+1∀i = 1, . . . ,m− 1, and
Cm = Caccept.

Here, each Ci represents a configuration of NSAT(x)’s computation.
So how do we check that Ci → Ci+1?

1. If it’s a “normal” transition, juts check (in poly-time) consistency with N ’s transition function.

2. If Ci queries the SAT oracle on some formula φi, receiving answer ai = 1 in Ci+1, then check
“∃uiφ(ui).”

3. If Ci queries the SAT oracle on φi receiving answer ai = 0, check “∀viφ(vi).”

Putting everything together, we thus have

x ∈ L ⇐⇒ ∃C1, . . . , Cm∃u1, . . . , um∀v1, . . . , vm((ai∧φ(ui))∨(ai∧φ(vi)))∧[poly-time consistency checks].

In general, we have Σp
i+1 = NPΣi-SAT.

Definition 7. For complexity class C, define NPC =
⋃

L∈CNPL.

Note that if C has a complete problem A (under poly-time reductions, then NPC = NPA. Thus,

NPNP = NPSAT = Σp
2 .

Similarly, Σp
3 = NPNPNP

etc.

2 Alternating Turing Machines

Alternating TMs generalize NTMs to allow for a mixture of existential and universal “guessing.” While, like
NTMs, they don’t represent a realistic model of computation, they are helpful for “programming” natural
algorithms for certain problems and give illuminating alternative characterizations of the complexity classes
we’ve studied.

To motivate the definition, let’s recall the tree view of plain old nondeterministic computation. When
running an NTM N on an input x, it starts in some initial configuration. Then in every time step, it has a
choice of two transition functions to follow. The NTM accepts if there exists a leaf in this tree representing
an accepting configuration.

3

⋮

2𝑇𝑇(𝑛𝑛) leaves

Depth 𝑇𝑇(𝑛𝑛)

Start configuration

Two nondeterministic choices

Similarly, one can define a coNTM, except that it accepts whenever all leaves are in accepting configu-
rations.

Another way to think about this is that in an NTM, all nodes in the tree of computation paths are labeled
by ∨ (“existential guessing”). The interpretation here being that the computation as a whole accepts if at
least one of the outgoing paths leads to acceptance. On a coNTM, think of all nodes as being labeled by ∧
(“universal guessing”), with the computation accepting if both outgoing paths lead to acceptance.

Now a question you might ask is: What happens if we mix ∧ and ∨ labels? This gives us alternating
TMs.

Definition 8 (Informal). An alternating TM is like an NTM, but before taking each transition, it may choose
whether to interpret the branch as existential (∨) or universal (∧).

See Arora-Barak for how to formalize this definition. Basically, each state in an alternating TM is
labeled with either ∨ or ∧, governing how to interpret the transitions from that state as above. To determine
wither an alternating TM accepts an input, imagine writing down the configuration graph and use the state
labels to backpropagate the acceptance criteria up to the start configuration.

A useful perspective on alternating TMs comes from parallel computation. On each transition, you can
think of an alternating TM as spawning two processes. It can then choose to accept overall if either:

∨: At least one process accepts

∧: Both processes accept.

Example 9. Recall the problem

SMALL-EQ-DNF = {⟨φ, k⟩ | ∃ DNF ψ, |ψ| ≤ k, ∀xφ(x) = ψ(x)}.

The following alternating TM decides this language:
On input ⟨φ, k⟩:

Existentially guess a DNF ψ of size ≤ k
Universally guess an input x
Accept iff ψ(x) = φ(x).

4

𝑘𝑘 levels of
existential
guessing

∨
∨ ∨

∨ ∨ ∨

∨ ∨ ∨ ∨

𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓

∧
∧∧
∧ ∧∧

∧
∧∧
∧ ∧∧

∧
∧∧
∧ ∧∧

∧
∧∧
∧ ∧∧

∧
∧∧
∧ ∧∧

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

𝑛𝑛 levels of
universal
guessing

2.1 Bounded Alternations

Definition 10. An ATM is of Σi type if its start state is labeled ∨ and it alternates ≤ i − 1 times on every
computation branch. (Similarly for Πi type, but with ∨ replaced with ∧)

Define the class

Σi-TIME(T (n)) = {L | L is decidable by a Σi type ATM in O(T (n)) steps}.

ATMs with bounded alternations give us yet another characterization of the polynomial hierarchy.

Fact 11.

Σp
i =

∞⋃
c=1

Σi-TIME(nc)

2.2 Unbounded Alternations

Define the classes

ATIME(T (n)) = {L | L is decidable by an ATM in O(T (n)) steps}
ASPACE(T (n)) = {L | L is decidable by an ATM in O(T (n)) space}.

These naturally give rise to alternating analogs of the main classes we’ve studied, e.g., AL,AP,APSPACE.
What do we know about these alternating classes? It turns out we know exactly what they are: AL =
P,AP = PSPACE,APSPACE = EXP.

Theorem 12. AP = PSPACE.

Proof. As always, there are two things to show.

PSPACE ⊆ AP. Since AP is closed under poly-time reductions, it suffices to show that the PSPACE-
complete problem TQBF is in AP. Here’s the alternating algorithm:

On input QBF Ψ = Q1x1Q2x2 . . . Qnxnφ:
If n = 0, evaluate φ
If Q1 = ∃: Existentially guess x1, and recurse on Ψ|x1 .
If Q1 = ∃: Universally guess x1, and recurse on Ψ|x1 .

5

AP ⊆ PSPACE. We’ll actually show the more general statement that an ATM running in time T (n) can
be simulated by a deterministic TM running in spaceO(T (n)). Recall that to simulate an alternating TMM
on an input x, we could materialize the tree of possible computations and propagate the acceptance criteria
up from the leaves to the root. Unfortunately, if our ATM runs in time T (n), this tree has size roughly 2T (n).
So instead, the idea will be to simulate this evaluation while only constructing nodes as we need them. More
specifically, we’ll do a depth-first post-order traversal to evaluate the nodes in the tree.

∨

∨ ∧

∧ ∨ ∧ ∨

1 2

3

4 5

6

8 9

10

11

7

12

13

14

15

At any point in the traversal, one needs enough working space to simulate one branch of the computation,
which takes O(T (n)) space, plus maintain the identity of the current working path from the tree root, which
takes another O(T (n)) space. So the total space usage of this algorithm is O(T (n)).

6

	PH via Oracles
	Alternating Turing Machines
	Bounded Alternations
	Unbounded Alternations

