
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 11:

More on Alternation, Time-Space Tradeoffs

Reading.

• Arora-Barak § 5.3-5.4

Last time: PH via oracles, alternation
We’ve now seen (at least?) four equivalent characterizations of each level of the polynomial hierarchy.

For example, the class Σp
2 can be described in any of the following ways:

1. ∃∀P

2. The class of languages L such that there exist polynomials p, q and a poly-time deterministic TM M
such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1.

3. NPNP = NPSAT

4. ∪∞
c=1Σ2TIME(nc)

Here, recall that Σ2TIME(T (n)) is the class of languages decidable by an alternating TM that starts
in a ∨ state, and alternates at most once on every computation branch.

1 Unbounded Alternations

At the end of last class, we started talking about alternating TMs with an unbounded number of alternations.
We defined

ATIME(T (n)) = {L | L is decidable by an ATM in O(T (n)) steps}
ASPACE(T (n)) = {L | L is decidable by an ATM in O(T (n)) space}.

These naturally give rise to alternating analogs of the main classes we’ve studied, e.g., AL,AP,APSPACE.
What do we know about these alternating classes? It turns out we know exactly what they are: AL =
P,AP = PSPACE,APSPACE = EXP. We’ll do one of these today.

Theorem 1. AP = PSPACE.

Proof. As always, there are two things to show.

1

PSPACE ⊆ AP. Since AP is closed under poly-time reductions, it suffices to show that the PSPACE-
complete problem TQBF is in AP. Here’s the alternating algorithm:

On input QBF Ψ = Q1x1Q2x2 . . . Qnxnφ:
If n = 0, evaluate φ
If Q1 = ∃: Existentially guess x1, and recurse on Ψ|x1 .
If Q1 = ∀: Universally guess x1, and recurse on Ψ|x1 .

AP ⊆ PSPACE. We’ll actually show the more general statement that an ATM running in time T (n) can
be simulated by a deterministic TM running in space O(T (n)). Recall that to simulate an alternating TM M
on an input x, we could materialize the tree of possible computations and propagate the acceptance criteria
up from the leaves to the root. Unfortunately, if our ATM runs in time T (n), this tree has size roughly 2T (n).
So instead, the idea will be to simulate this evaluation while only constructing nodes as we need them. More
specifically, we’ll do a depth-first post-order traversal to evaluate the nodes in the tree.

∨

∨ ∧

∧ ∨ ∧ ∨

1 2

3

4 5

6

8 9

10

11

7

12

13

14

15

At any point in the traversal, one needs enough working space to simulate one branch of the computation,
which takes O(T (n)) space, plus maintain the identity of the current working path from the tree root, which
takes another O(T (n)) space. So the total space usage of this algorithm is O(T (n)).

2 Time-Space Tradeoffs

For all we know...

1. SAT could have a linear time algorithm, i.e., SAT ∈ DTIME(n).

2. SAT could have a logspace algorithm, i.e., SAT ∈ L.

3. Or both! I.e., SAT ∈ DTIME(n) ∩ L.

We believe these are probably not the case, but are very far from proving so. However, what we can
show is that SAT cannot be solved by an algorithm that simultaneously runs in low time and in low space.

Definition 2. For functions T (n) and S(n), define TISP(T (n), S(n)) to be the class of languages decid-
able by TMs running in both time T (n) and space S(n).

2

Make sure you understand the difference between TISP(T (n), S(n)) and DTIME(T (n))∩SPACE(S(n))!
Curiously, while this is just a statement about the deterministic time/space complexity of a specific

combinatorial problem, the proof crucially makes use of alternations.

Theorem 3.
SAT /∈ TISP(n1.1, n0.1).

We won’t prove this for SAT directly. What we’ll actually show is that there exists a language L ∈
NTIME(n) such that L /∈ TISP(n1.2, n0.2). The statement about SAT follows from a refinement of the
Cook-Levin Theorem which says that an arbitrary language L ∈ NTIME(T (n)) can be reduced to SAT
with only a quasi-linear blowup, i.e., each instance in L maps to a formula of size O(T (n) log T (n)).

Here’s the gameplan for the proof. Assume for the sake of contradiction that NTIME(n) ⊆ TISP(n1.2, n0.2).
Our goal will be to derive a contradiction to the nondeterministic time hierarchy theorem as follows.

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛 ⊆ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝑛𝑛1.2,𝑛𝑛0.2)

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛10 ⊆ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝑛𝑛12,𝑛𝑛2)

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛10 ⊆ 𝚺𝚺𝟐𝟐𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝑛𝑛8)

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛 ⊆ 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃(𝑛𝑛1.2)

𝚺𝚺𝟐𝟐𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝑛𝑛8 ⊆ 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛9.6

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝑛𝑛10 ⊆ 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍(𝑛𝑛9.6)

Padding

Claim 1: “Trade time for
alternation”

Claim 2: “Trade
alternation for time”

Contradiction to nondeterministic
time hierarchy

Claim 4. TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof. Suppose L is decided by a TM M running in time ≤ Kn12 and space O(n2) for some constant K.
Then

x ∈ L ⇐⇒ ∃ a path from Cstart to Cacc in GM,x of length ≤ Kn12

⇐⇒ ∃ configurations C0, . . . , Cn6 such that C0 = Cstart, Cn6 = Cacc

and there is a path from each Ci−1 to Ci of length ≤ Kn6.

Now observe that:

• The sequence of configurations C0, . . . , Cn6 has description length O(n6) · O(n2) = O(n8), since
each configuration can be described in O(n2) bits.

3

• By simulation via the UTM, it’s possible to check if Ci−1 can reach Ci within Kn6 steps using time
O(n7).

Thus, the following Σ2 type TM decides L in time O(n8):
On input x:

Existentially guess configurations C0, . . . , Cn6

Universally guess an index i ∈ 1, . . . , n6

Check C0 = Cstart, Cn6 = Cacc, and that Ci−1 leads to Ci in ≤ Kn6 steps.

Claim 5. If NTIME(n) ⊆ DTIME(n1.2), then Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof. Let L ∈ Σ2TIME(n8). Then there exists an O(n8)-time TM M (where runtime is measured as a
function of |x|) and constant c such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}c|x|8∀v ∈ {0, 1}c|x|8M(x, u, v) = 1

⇐⇒ ∃u ∈ {0, 1}c|x|8 s.t. ⟨x, u⟩ /∈ R,

where the helper language R is defined as

R = {⟨x, u⟩ | ∃v ∈ {0, 1}c|x|8M(x, u, v) = 0}.

Note that R ∈ NTIME(n) ⊆ DTIME(n1.2) by assumption, so there is some deterministic TM D
deciding R in time O(n1.2).

Thus, we obtain the following NTM for the language L:
On input x:

Nondeterministically guess u ∈ {0, 1}c|x|8

Run D(x, u) and flip the answer.
The runtime of this NTM is O(n8) +O((n8)1.2) = O(n9.6).

2.1 Different Time-Space Tradeoffs

1. The same proof gives the following. For every ε > 0, there exists δ > 0 such that NTIME(n) ̸⊆
TISP(n1+δ, n1−ε)

2. At the other extreme, we also have that for every ε > 0, there exists δ > 0 such that NTIME(n) ̸⊆
TISP(n2 cos(π/7)−ε, nδ), where 2 cos(π/7) ≈ 1.8019. This record is due to Williams from around
2007, and was discovered by computer search. Moreover, this search provides evidence that this
bound is optimal for “alternation-trading” proofs.

3 Boolean Circuits

A Boolean circuit is a directed, acyclic graph with

• n sources representing inputs,

• m sinks representing outputs,

• non-input vertices (“gates”) labeled by ∨,∧, or ¬,

4

• fan-in (in-degree) and fan-out (out-degree) of 1 or 2 on gates.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛

∧ ∨ ∧

∨ ¬ ∨

𝑦𝑦1 𝑦𝑦2 𝑦𝑦𝑚𝑚

…

…

To evaluate a circuit on an input x ∈ {0, 1}n, evaluate the intermediate gates recursively until values are
derived at the output gates.

A circuit defines a function Cn : {0, 1}n → {0, 1}m. Its size, denoted |Cn|, is the number of vertices.

Definition 6. A T (n)-size circuit family is an infinite sequence of circuits C = {Cn}∞n=1 such that |Cn| ≤
T (n) for every n.

We say that C decides a language L if for every n and every x ∈ {0, 1}n, we have x ∈ L ⇐⇒
Cn(x) = 1.

Some motivation for studying circuits:

• Circuits more closely model computer hardware (silicon chips) than TMs, and also turn out to be
useful for modeling parallel computation.

• It’s often easier to reason about circuits than it is to reason about TMs. For example, much of the
power of the Cook-Levin Theorem comes from how it translates questions about arbitrary NTMs into
questions about CNF formulas (a restricted class of circuits).

• There’s a close connection between circuit complexity and oracle complexity, based on fruitful analo-
gies between TM classes and classes of circuits (e.g., NP ≈ DNF, coNP ≈ CNF, PH ≈ AC0).
Much of what we know about oracle classes comes from circuit complexity. And much of what we
know about circuit complexity comes from asking questions about oracles.

5

	Unbounded Alternations
	Time-Space Tradeoffs
	Different Time-Space Tradeoffs

	Boolean Circuits

