
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 12:

Circuits, Non-Uniform Computation

Reading.

• Arora-Barak § 6.1-6.3

Last time: Alternation, Time-Space Tradeoffs for SAT

1 Boolean Circuits

A Boolean circuit is a directed, acyclic graph with

• n sources representing inputs,

• m sinks representing outputs,

• non-input vertices (“gates”) labeled by ∨,∧, or ¬,

• fan-in (in-degree) of 1 or 2 on gates.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛

∧ ∨ ∧

∨ ¬ ∨

𝑦𝑦1 𝑦𝑦2 𝑦𝑦𝑚𝑚

…

…

To evaluate a circuit on an input x ∈ {0, 1}n, evaluate the intermediate gates recursively until values are
derived at the output gates.

1

A circuit defines a function Cn : {0, 1}n → {0, 1}m. We’ll be interested in using circuits to decide
languages, but we immediately run into a syntatic mismatch. A circuit Cn only defines a function on Boolean
strings of length exactly n, but a language defines a computational problem over inputs from {0, 1}∗ that
could have arbitrary length. The resolution is to study infinite families of circuits, one to handle every input
length individually.

Definition 1. A circuit family is an infinite sequence of circuits C = {Cn}∞n=1.
We say that C decides a language L if for every n and every x ∈ {0, 1}n, we have x ∈ L ⇐⇒

Cn(x) = 1.

The size of a circuit, denoted |Cn|, is the number of vertices. Its depth is the length of the longest
directed path from an input vertex to an output vertex. Both size and depth can be taken as measures of the
complexity of a circuit, with size playing a role similar to time complexity on a TM, and depth corresponding
to time on a parallel computer.

Definition 2 (Circuit size classes). A circuit family such that C = {Cn}∞n=1 has size T (n) if |Cn| ≤ T (n)
for every n. The class SIZE(T (n)) consists of languages L that are decidable by T (n)-size circuit families.
The class P/poly = ∪∞

c=1SIZE(nc) consists of languages that are decidable by polynomial-size circuits.

Some motivation for studying circuits:

• Circuits more closely model computer hardware (silicon chips) than TMs, allowing for the more
realistic study of problems on concrete input lengths. They are also useful for modeling parallel
computation.

• It’s often easier to reason about circuits than it is to reason about TMs, but proving things about circuits
can help us prove things about TMs. For example, much of the power of the Cook-Levin Theorem
comes from how it translates questions about arbitrary NTMs into questions about CNF formulas (a
restricted class of circuits). We’ll see more examples of this later.

• There’s a close connection between circuit complexity and oracle complexity, based on fruitful analo-
gies between TM classes and classes of circuits (e.g., NP ≈ DNF, coNP ≈ CNF, PH ≈ AC0).
Much of what we know about oracle classes comes from circuit complexity. And much of what we
know about circuit complexity comes from asking questions about oracles.

Here are a few helpful examples for getting to know how to deal with circuits.

Example 3. Consider the n-variable ANDn : {0, 1}n → {0, 1} function. We can implement as a circuit
with fan-in 2 gates using a binary tree of size n and depth log n:

2

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛

∧

…𝑥𝑥4 𝑥𝑥𝑛𝑛−1

∧

∧ ∧

∧

…

∧

Thus, if you care only about circuit size up to polynomial factors, or circuit depth up to polylogarithmic
factors, you can assume for simplicity that the n-input functions ANDn and ORn are computed by a single
fan-in n gate.

However: If you want to study finer gradations between classes of circuits, for instance by examining
levels of the NC hierarchy of polylogarithmic-depth circuits, then it’s important to take care that your AND
and OR gates have fan-in 2.

Example 4. We’ve defined Boolean circuits to allow for arbitrary interlacing between ANDs, ORs, and
NOTs. But using de Morgan’s rules, we can “push all negations to the bottom” in an arbitrary circuit. So
we can assume without loss of generality that all negations appear at the bottom level, or equivalently, that
a Boolean circuit is just an AND/OR circuit over the set of literals x1, x1, . . . , xn, xn.

𝑥𝑥1 𝑥𝑥2

∨

𝑥𝑥3

∧

∧

¬

𝑥𝑥1 𝑥𝑥2

∨

𝑥𝑥3

∧

¬ ¬

∨

𝑥𝑥1 𝑥𝑥2

∨

𝑥𝑥3

∧∨= =

Example 5. Examples 3 and 4 above illustrate Boolean formulas, where each intermediate gate has fan-out
only 1.

But general Boolean circuits are more powerful in that intermediate gates can have fan-out ≥ 2, which
enables the reuse of intermediate comptuations. For example, consider computing the Parity (or XOR)
function. On two bits, we have

x⊕ y = (x ∧ y) ∨ (x ∧ y).

3

Thus, we can build a circuit Cn for Parity on n bits out of subcircuits Cn/2 for Parity on n/2 bits:

Cn(x1, . . . , xn) = (Cn/2(x1, . . . , xn/2)∧¬Cn/2(xn/2+1, . . . , xn)∨(¬Cn/2(x1, . . . , xn/2)∧Cn/2(xn/2+1, . . . , xn)).

This gives us the recurrence |Cn| = 5 + |Cn/2|+ |Cn/2|, which resolves to |Cn| = O(n).

∧

∨

𝐶𝐶𝑛𝑛/2

𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛/2

𝐶𝐶𝑛𝑛/2

𝑥𝑥𝑛𝑛/2 +1 … 𝑥𝑥𝑛𝑛

¬ ¬
∧

On the other hand, one can show that every formula computing Parity requires size Ω(n2).
Note that an inverted tree of fan-out 2 gates lets one build a gate of arbitrary fan-out. This increases cir-

cuit size by a constant factor, and depth by a logarithmic factor. So while there’s potentially a big difference
between fan-out 1 and fan-out 2, there’s not much of a difference (unless one wants to study circuit depth)
between fan-out 2 and arbitrary fan-out.

2 Circuits vs. Turing Machines

Circuit families are at least as powerful as TMs in that TMs can be compiled into circuits with low overhead
in the compilation.

Theorem 6. Let M be a TM running in time T (n) where log T (n) is a space-constructible function. Then
there exists a circuit family C = {Cn}∞n=1 such that:

1. For every n ∈ N and x ∈ {0, 1}n, we have Cn(x) = M(x).

2. For every n, we have |Cn| ≤ poly(T (n)).

3. Uniformity: There exists a TM N running in time poly(T (n)) and space O(log T (n)) that prints
descriptions of the circuits, i.e., N(1n) = ⌊Cn⌋.

Proof idea. Once again, this uses similar ideas to the proof of the Cook-Levin Theorem. The TM M accepts
an input x of length n if there exists a sequence of T (n) configurations K1,K2, . . . ,KT (n) such that K1 is
the start configuration, KT (n) is an accepting configuration, and it is possible to get from each Ki to Ki+1

in one step of computation. These can be checked by replicating a constant (depending on M , of course)
sized gadget across constant-sized windows of adjacent configurations.

4

Corollary 7. P ⊆ P/poly.

How about the reverse containment? Is P/poly contained in P? The answer is no, since (awkward
terminology) P/poly can decide undecidable languages.

Fact 8. Every unary language L ⊆ {1}∗ is in P/poly.

Proof. Each circuit Cn is just a constant indicating whether 1n is in L.

Fact 9. There exists an undecidable unary language.

Proof. Take your favorite undecidable language, e.g., the Halting problem, and encode it in unary.

2.1 Uniformity and Non-uniformity

The key conceptual difference between Turing machines and circuits is that the former is a uniform model of
computation (i.e., the same algorithm is used on inputs of every length), whereas the latter is a non-uniform
model (i.e., a different algorithm is used on each input length.) In a sense, this is the only difference,
as efficient TMs are equivalent to uniformly-generated circuit families, while arbitrary circuit families are
equivalent to TMs that take “non-uniform advice.”

Theorem 10. A language L ∈ P if and only if there exists a logspace uniform circuit family computing L.
(That is, there exists a logspace TM that on input 1n outputs the description of the n’th circuit in the family.)

Proof. The “only if” direction follows immediately from Theorem 6. For the “if” direction, suppose L is
decidable by a circuit family generated by logspace TM N . Then the following poly-time TM decides L:

On input x:

1. Generate circuit Cn = N(1|x|)

2. Evaluate Cn(x).

Logspace uniformity guarantees that Cn takes logspace, and hence polynomial time, to construct. Moreover,
since the circuit has polynomial size, it takes polynomial time to evaluate.

Theorem 11. A language L ∈ P/poly if and only if L is decided in poly-time by a TM taking “polynomial
advice.” That is, there exists a TM M , a polynomial p, and an infinite sequence of strings {αn}∞n=1, with
αn ∈ {0, 1}p(n) such that x ∈ L ⇐⇒ M(x, α|x|) = 1.

Proof. For the “only if” direction, let L ∈ P/poly be computed by a poly-size circuit family {Cn}. Define
an advice sequence by αn = ⌊Cn⌋. Then the following TM M with advice {αn} decides L in poly-time:

On input x, αn:

1. Construct circuit Cn corresponding to αn

2. Evaluate Cn(x).

For the “if” direction, let L be decided by a poly-time TM M using advice {αn}. For each n, use the
transformation described in the proof of Theorem 6 on M(·, αn) to obtain a poly-size circuit family.

5

2.2 Non-Uniform Advice vs. Witnesses/Certificates

Non-uniform advice bears a tantalizing similarity to the witnesses/certificates used to characterize NP lan-
guages. But the order of quantifiers makes a big difference! Specifically, a machine M decides a language
L in each model if:

Non-uniform advice: ∃{αn}∞n=1∀x ∈ {0, 1}∗ x ∈ L ⇐⇒ M(x, αn) = 1

Certificates: ∀x ∈ {0, 1}∗ x ∈ L ⇐⇒ ∃w M(x,w) = 1.
That is, with non-uniform advice, the same advice string αn has to work for all strings x of length n,

whereas an NP certificate is allowed to depend on the particular instance x. At first glance, this may make
non-uniform advice appear less powerful than NP certificates. But the upshot of the quantifier switch is that
the same advice string equally helps certify non-membership in L. So the resources really do seem to be
incomparable.

Next time, we’ll study the Karp-Lipton Theorem, which tells us more about the relationship between
these resources.

6

	Boolean Circuits
	Circuits vs. Turing Machines
	Uniformity and Non-uniformity
	Non-Uniform Advice vs. Witnesses/Certificates

