
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 13:

Karp-Lipton, Circuit Lower Bounds, Restricted Circuit Classes

Reading.

• Arora-Barak § 6.4-6.7

Last time: Intro to Circuits
A circuit family C = {Cn}∞n=1 is an infinite sequence of circuits, where each Cn : {0, 1}n → {0, 1} is

built from ∧,∨,¬ gates.
The class P/poly consists of languages that are decided by poly-size circuit families.

1 Relating Circuits and TMs

The key conceptual difference between Turing machines and circuits is that the former is a uniform model of
computation (i.e., the same algorithm is used on inputs of every length), whereas the latter is a non-uniform
model (i.e., a different algorithm is used on each input length.) In a sense, this is the only difference,
as efficient TMs are equivalent to uniformly-generated circuit families, while arbitrary circuit families are
equivalent to TMs that take “non-uniform advice.”

Last time, we saw the first of these statements:

Theorem 1. A language L ∈ P if and only if there exists a logspace uniform circuit family computing L.

Now let’s see how to “non-uniformize" Turing machines to get an equivalent characterization of P/poly.

Theorem 2. A language L ∈ P/poly if and only if L is decided in poly-time by a TM taking “polynomial
advice.” That is, there exists a TM M , a polynomial p, and an infinite sequence of strings {αn}∞n=1, with
αn ∈ {0, 1}p(n) such that x ∈ L ⇐⇒ M(x, α|x|) = 1.

Proof. For the “only if” direction, let L ∈ P/poly be computed by a poly-size circuit family {Cn}. Define
an advice sequence by αn = ⌊Cn⌋. Then the following TM M with advice {αn} decides L in poly-time:

On input x, αn:

1. Construct circuit Cn corresponding to αn

2. Evaluate Cn(x).

For the “if” direction, let L be decided by a poly-time TM M using advice {αn}. For each n, use the
transformation described in the proof of Lecture 12, Theorem 6 on M(·, αn) to obtain a poly-size circuit
family.

1

2 Karp-Lipton Theorem

Non-uniform advice bears a tantalizing similarity to the witnesses/certificates used to characterize NP lan-
guages. But the order of quantifiers makes a big difference! Specifically, a machine M decides a language
L in each model if:

Non-uniform advice: ∃{αn}∞n=1∀x ∈ {0, 1}∗ x ∈ L ⇐⇒ M(x, αn) = 1

Certificates: ∀x ∈ {0, 1}∗ x ∈ L ⇐⇒ ∃w M(x,w) = 1.
That is, with non-uniform advice, the same advice string αn has to work for all strings x of length n,

whereas an NP certificate is allowed to depend on the particular instance x. At first glance, this may make
non-uniform advice appear less powerful than NP certificates. But the upshot of the quantifier switch is that
the same advice string equally helps certify non-membership in L. So the resources seem incomparable.

In fact, we already know that non-uniform advice can be more powerful than nondeterminism since the
former can be used to solve undecidable problems. Thus, P/poly ̸⊆ NP. What about the other direction?

Theorem 3 (Karp-Lipton). If NP ⊆ P/poly, then PH = Σp
2.

Before proving this, let’s mention some interpretations:

• Taking the contrapositive, the Karp-Lipton Theorem says that if the polynomial hierarchy does not
collapse, then NP ̸⊆ P/poly. So this can be taken as evidence that NP does not have poly-size
circuits.

• Combined with the observation that P/poly ̸⊆ NP, this suggests that non-uniform advice and non-
determinism are incomparable computational resources.

• Given this evidence that NP ̸⊆ P/poly, a viable strategy for proving that NP ̸⊆ P would be to
actually prove the stronger statement that, say, SAT does not have poly-size circuits. Since circuits
are nice combinatorial objects, this might be easier to prove than trying to reason about the TM
complexity of SAT directly.

Proof. Suppose NP ⊆ P/poly. To show that PH = Σp
2, it suffices to show that Πp

2 ⊆ Σp
2. To establish

this, it in turn suffices to show that the Πp
2-complete problem Π2-SAT ∈ Σp

2. That is, we want to exhibit a
Σ2-type ATM determining the truth of formulas of the form “∀u∃vφ(u, v).”

The idea is as follows. Our assumption that NP ⊆ P/poly means that for every u, the subproblem
∃vφ(u, v) can be computed by a small circuit C. Our Σ2 machine will first existentially guess this circuit,
then use universal guessing to check it.

So now let’s carry out this idea in detail. We need to do a bit of technical preparation. First, recall the
search-to-decision reduction for SAT, which says that if SAT ∈ P, then there is a poly-time algorithm that
finds a satisfying assignment whenever one exists. This transformation works equally well for circuits. That
is, if SAT ∈ P/poly, there exists a poly-size circuit family {CSAT,n}∞n=1 such that CSAT,|ψ|(ψ) outputs a
satisfying assignment to ψ whenever one exists.

Let’s also introduce the following piece of helpful notation. For a formula φ(u, v), and a partial assign-
ment a to the variables u, define φu=a(v) to be the formula obtained by setting the variables u to assignment
a. Now consider the following Σ2-type TM:

On input a quantified formula ∀u ∈ {0, 1}n∃v ∈ {0, 1}nφ(u, v):

2

1. Existentially guess a circuit C (representing a guess for CSAT of appropriate size to handle as input a
formula φu=a)

2. Universally guess a string a ∈ {0, 1}n

3. Construct the formula φu=a(v). Use the circuit to produce a candidate satisfying assignment b =
C(φu=a).

4. Check that φ(a, b) = 1.

To see why this is correct, observe that

∀u ∈ {0, 1}n∃v ∈ {0, 1}nφ(u, v) ⇐⇒ ∀a ∈ {0, 1}nφu=a ∈ SAT

⇐⇒ ∀a ∈ {0, 1}nφ(a,CSAT(φu=a)) = 1

⇐⇒ ∃C∀a ∈ {0, 1}nφ(a,C(φu=a)) = 1,

which is the criterion that our ATM checks.

3 Circuit Lower Bounds

Despite the fact that P/poly contains undecidable languages, the Karp-Lipton Theorem says it’s reasonable
to conjecture that NP ̸⊆ P/poly. So why might it be easier to prove this statement than to prove that
NP ̸⊆ P directly? The answer is that we have techniques beyond diagonalization and related arguments
for proving circuit lower bounds, in particular, techniques that don’t relativize.

Here’s a simple (but dramatic) example of a circuit lower bound.

Theorem 4. For every (sufficiently large) n, there exists a function f : {0, 1}n → {0, 1} that requires
circuit size ≥ 2n/5n.

Note that this is essentially tight. One can show that every function is computed by a circuit of size
O(2n/n). Actually, we have a very sharp understanding of the maximal circuit complexity of n-input
functions; it’s between 2n/n and (1 + o(1))2n/n.

Proof. The proof is by a “counting argument.” We’re going to count the number of functions f : {0, 1}n →
{0, 1}, and count the number of small circuits, and show that the former is larger than the latter.

1. How many n-bit functions f : {0, 1}n → {0, 1} are there? Answer: 22
n

.

2. How many (fan-in 2) circuits of size s are there? For each vertex v = 1, . . . , s, there are:

• ≤ s2 ways to determine the inputs to v

• ≤ n+ 3 choices for what type of vertex v is (n inputs, ∧, ∨, ¬)

Thus, there are at most (s2(n+ 3))s ≤ 24s log s circuits of size s.

If s ≤ 2n/5n, then we have

24s log s ≤ 24(2
n/5n)·n ≤ 22

n·(4/5) < 22
n
.

3

In fact, note that the ratio of the number of circuits to the number of functions is at most

22
n·(4/5)

22n
= 2−2n/5 → 0

as n→ ∞, so “almost all” functions do not have circuits below this size.

4 Restricted Depth Classes

We know that most functions require huge circuits, but we’d really like to show that functions we care about
(e.g., SAT, or any language in NP) do as well.

Sadly, we do not yet have good techniques for proving general circuit lower bounds for “explicit” func-
tions. But we do have techniques for studying circuits of small depth.

Definition 5. For each natural number k, define NCk to be the class of languages decidable by circuits of
size poly(n) and depth O(logk n).

The class NC =
⋃∞
k=1NCk.

(NC stands for “Nick’s Class” named after Nicholas Pippenger.)

Definition 6. For each natural number k, define ACk to be the class of languages decidable by circuits of
size poly(n) and depth O(logk n) using unbounded fan-in ∧ and ∨ gates.

The class AC =
⋃∞
k=1ACk.

(AC stands for “Alternating Class” after the connection to alternating TMs.)

Fact 7. For every k, we have NCk ⊆ ACk ⊆ NCk+1.

Proof. The first inclusion is automatic from the definitions. For the second inclusion, we use the fact that
any gate with poly(n) fan-in can be replaced by an O(log n)-depth tree.

These classes are already interesting (and test the limits of our understanding) at low levels.

NC0: This class consists of languages decidable by constant-depth circuits. So observe that each output
bit can only depend on a constant number of input bits.

This isn’t very interesting for languages, but for multi-bit output functions, there is evidence that this
class is powerful enough to do cryptography. (See [Appelbaum-Ishai-Kushilevitz06], “Cryptography in
NC0”.)

AC0: This class generalizes DNF and CNF (depth-2) to circuit families of arbitrary constant depth. Some
basic arithmetic (addition, but not multiplication), approximate counting, and searching constant-width
mazes are possible in AC0. Some important examples of functions not computable in AC0 are parity
and majority.

NC1: This class is equivalent to poly-size formulas (circuits where each gate has fan-out 1). This is
because formulas can be “balanced” recursively to bring their depth down to O(log(size)). Sadly, the best
known formula size bound for an explicit function is only about n3.

4

4.1 Parallel Computation

Roughly, (uniform) circuits of size s and depth d capture what can be computed by s parallel, random-access
processors running in “wall-time” d.

Therefore, (uniform) NC captures the languages decidable by a parallel computer with polynomially
many processors running in polylogarithmic time.

5

	Relating Circuits and TMs
	Karp-Lipton Theorem
	Circuit Lower Bounds
	Restricted Depth Classes
	Parallel Computation

