
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 15:

Probabilistic Time Classes, Concentration Inequalities, Error Reduction

Reading.

• Arora-Barak § 7.3-7.4

Last time: Randomized Algorithms

1 Probabilistic Time Classes

Definition 1. A probabilistic TM has two transition functions δ0, δ1. It computes by applying either δ0 or
δ1 independently in each time step, each with probability 1/2.

If M is a probabilistic TM and x is an input, let M(x) denote the random variable where M(x) = 1 if
M accepts x on a realized sequence of random transitions, and M(x) = 0 otherwise.

Let TM,x be the random variable denoting the number of steps M takes on x before halting.

Definition 2 (Runtime for Probabilistic TMs). blah

• M runs in (worst-case) time T (n) if for all x ∈ {0, 1}∗, we have TM,x ≤ T (|x|) with probability 1.

• M runs in expected time T (n) if for all x ∈ {0, 1}∗, we have E[TM,x] ≤ T (|x|).

Example 3. The algorithm Findk we discussed last time runs in expected time O(n).

Some Probabilistic Time Classes

Definition 4. L ∈ RP if there exists a probabilistic TM running in time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L =⇒ Pr[M(x) = 1] = 0.

Definition 5. L ∈ coRP if there exists a probabilistic TM running in time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] = 1

x /∈ L =⇒ Pr[M(x) = 1] ≤ 1/3.

Example 6. Zero testing for arithmetic formulas over the integers, ZEROFZ ∈ coRP.

Two-sided error:
In general, probabilistic algorithms may make errors on both YES instances and NO instances of a

problem.

1

Definition 7. L ∈ BPP if there exists a probabilistic TM running in time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L =⇒ Pr[M(x) = 1] ≤ 1/3.

Some Relationships Between Classes

• RP ⊆ BPP

• coRP ⊆ BPP

• RP ⊆ NP

The last statement is true because of the following alternative characterization of NP.

Claim 8. A language L ∈ NP if and only if there exists a probabilistic TM M running in time poly(n)
such that

x ∈ L =⇒ Pr[M(x) = 1] > 0

x /∈ L =⇒ Pr[M(x) = 1] = 0.

Proof. Let L be decided by a poly-time NTM N . One can also interpret N as a PTM. There exists a
computational branch on which N accepts iff, as a PTM, it accepts with positive probability.

Zero error:
Some probabilistic algorithms have “zero-sided error” but may not always terminate within a strict time

bound.

Definition 9. L ∈ ZPP if there exists a probabilistic TM running in expected time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] = 1

x /∈ L =⇒ Pr[M(x) = 1] = 0.

Example 10. Findk runs in expected time O(n) with zero error (as a search problem).

Despite exploiting randomness in seemingly different ways, there is a very clean relationship between
our one-sided error and zero-sided error classes.

Theorem 11. ZPP = RP ∩ coRP.

The proof of this is a good excuse to introduce a bit of important probabilistic machinery.

2 Concentration Inequalities

Let’s start with a simple motivating question. Suppose I toss n fair coins. One expects roughly n/2 of those
coins to come up heads, and than an absurd majority like 3n/4 will come up heads with tiny probability.
How can we prove this?

2

First, let’s set up the math problem capturing this question. Define random variables H1, . . . ,Hn via

Hi =

{
1 if coin i comes up heads
0 if coin i comes up tails.

Let H =
∑n

i=1Hi denote the number of heads. Then by linearity of expectation,

E[H] =

n∑
i=1

E[Hi] =
n

2
.

Our goal is to estimate Pr[H ≥ 3n/4], and show that this probability is small.

Markov’s Inequality: For any random variable X ≥ 0, and real number t ≥ 0, we have

Pr[X ≥ t] ≤ E[X]

t
.

Proof. For a nonnegative random variable X , we have

E[X] =

∫ ∞

0
Pr[X ≥ x] dx ≥ Pr[X ≥ t] · t.

Rearranging gives the statement.

Example 12. Applying Markov’s inequality with X = H, t = 3n/4, and E[H] = n/2, we get

Pr[H ≥ 3n/4] ≤ n/2

3n/4
≤ 2/3.

True, but not that useful.

Chebyshev’s Inequality: If X is any real-valued random variable, and t > 0 is a real number, then

Pr[|X − E[X]| > t] ≤ Var[X]

t2
.

Proof. We calculate

Pr[|X − E[X]| > t] = Pr[(X − E[X])2 > t2]

≤ 1

t2
· E[(X − E[X])2] =

Var[X]

t2
,

where the inequality is Markov applied to the r.v. (X − E[X])2.

Example 13.

Pr[H ≥ 3n/4] ≤ Pr[|H − E[H]| ≥ n/4]

≤ Var[H]|
(n/4)2

=
16

n2

n∑
i=1

Var[Hi]

=
16

n2
· n
4
=

4

n
.

Here, the identity Var[H] =
∑n

i=1Var[Hi] holds because the coin tosses are independent.

3

Hoeffding’s Inequality: Let X1, . . . , Xn be independent, [0, 1]-valued random variables, and let X =∑n
i=1Xi. Then for all t > 0,

Pr[|X − E[X]| > t] ≤ 2 exp

(
−2t2

n

)
.

This inequality is related to the “Chernoff Bound” stated as Corollary A.15 in Arora-Barak. It’s techni-
cally incomparable – more general in the sense of applying to bounded r.v.’s instead of just Boolean ones, but
only controlling additive rather than multiplicative error relative to the mean. (Knock on wood) everything
we’ll do in this class only requires Hoeffding’s inequality.

Example 14.

Pr
[
|H − n

2
| ≥ n/4

]
≤ 2 exp

(
−2(n/4)2

n

)
≤ 2e−n/8.

3 Proof of Theorem 11

Proof that ZPP ⊆ RP∩ coRP. Let L ∈ ZPP be decided by a zero-error PTM M running in expected
time p(n). We’ll first show that L ∈ RP. Here’s the algorithm.
Algorithm N(x)
On input x:

1. Run M on x for 3p(|x|) steps.

2. If M accepted, accept. If M either rejected or did not yet halt, reject.

Runtime analysis: The algorithm always halts after O(p(n)) steps, so it has polynomial worst-case runtime.
Correctness analysis: First suppose x ∈ L. Then by our assumption on M , we have E[TM,x] ≤ p(|x|). By
Markov, this implies

Pr[TM,x ≥ 3p(|x|)] ≤ 1

3
.

Hence, M halts on x with probability at least 2/3, and if it halts, it correctly accepts by zero-error. Therefore,
N accepts x with probability at least 2/3.

On the other hand, if x /∈ L, then with probability 1 we have that M either rejects (by zero error) or fails
to halt within 3p(|x|) steps. In either case, N correctly rejects.

The proof for ZPP ⊆ coRP is similar. The only change is that if M fails to halt, we accept.

Proof that RP ∩ coRP ⊆ ZPP. Let L ∈ RP ∩ coRP be decided by p(n) time RP machine M1 and
coRP machine M2. We’ll argue that the following PTM decides L with zero error.
Algorithm N(x)
On input x

Repeat the following indefinitely:

1. Run M1 on x. If it accepts, accept.

2. Run M2 on x. If it rejects, reject.

I’ll leave the proof of correctness and polynomial expected runtime for your homework.

4

4 Error Reduction

The constant 2/3 in the definitions of RP, coRP, and BPP may seem arbitrary – and that’s because they
are. These classes don’t change when 2/3 is replaced by any positive constant, in the case of RP and
coRP, or any constant > 1/2 in the case of BPP.

In fact, something stronger is true. The definition of BPP doesn’t change even when we replace the
error threshold with 1/2 + 1/poly(n) or with 1− 2−poly(n).

Theorem 15 (Error Reduction for BPP). Suppose M is a PTM running in time T (n) such that

x ∈ L =⇒ Pr[M(x) = 1] ≥ 1

2
+ ε

x /∈ L =⇒ Pr[M(x) = 1] ≤ 1

2
− ε.

We’ll abuse notation a bit and write these conditions together as “For all x, we have Pr[M(x) = L(x)] ≥
1
2 + ε.”

Then there exists a PTM M ′ running in time O(log(1/δ)
ε2

· T (n)) such that Pr[M ′(x) = L(x)] ≥ 1− δ.

That is, one can start with a PTM that beats random guessing by with advantage ε, and boost its success
probability to 1− δ, all with a modest blowup in runtime.

Before proving this, let’s see some examples of how to use it.
If I start with Pr[M(x) = L(x)] ≥ blank Then I get Pr[M(x) = L(x)] ≥ blank Using blank repetitions of M

1
2 + 1

n2
2
3 O

(
log 3

(1/n2)2

)
= O(n4)

2/3 1− 1
n2 O(log n)

2/3 1− 2−10n O(n)
1
2 + 1

n100 1− 2−n−100
O(n300)

1
2 + 2−n 1− 2−n O(n · 22n)

Proof. Define the algorithm M ′(x) as follows.
On input x:

1. Run M(x) independently k = log(2/δ)
ε2

times, producing outputs b1, . . . , bk.

2. Out the majority vote of those outputs.

By construction, this has the stated runtime.
To analyze correctness, define the random variables

Xi =

{
1 if bi = L(x)

0 otherwise.

Why are these r.v.’s useful? Note that

• Our algorithm outputs the majority vote of the bi’s, which agree with L iff the majority of the Xi’s
are 1. In other words, our algorithm makes an error iff X < k/2 where X =

∑k
i=1Xi.

• Each Xi individually takes the value 1 with some advantage over random guessing, i.e., E[Xi] ≥
1/2 + ε. So E[X] ≥ k/2 + εk.

5

Putting these observations together and applying Hoeffding’s inequality, we have

Pr[M ′(x) ̸= L(x)] = Pr[X < k/2]

≤ Pr[|X − E[X]| > εk]

≤ 2 exp

(
−2(εk)2

k

)
≤ δ.

Theorem 16 (Error Reduction for RP). If M is a PTM deciding L with one-sided error, i.e.,

x ∈ L =⇒ Pr[M(x) = 1] ≥ ε

x /∈ L =⇒ Pr[M(x) = 1] = 0,

then the PTM M ′ obtained by repeating M independently k = O(log(1/δ)/ε) times and accepting if
at least one run accepts has one-sided error, and x ∈ L =⇒ Pr[M ′(x) = 1] ≥ 1− δ.

6

	Probabilistic Time Classes
	Concentration Inequalities
	Proof of Theorem 11
	Error Reduction

