
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 16:

Error Reduction, BPP ⊆ P/poly, BPP ⊆ PH

Reading.

• Arora-Barak § 7.4-7.5

Last time: Probabilistic Classes, Concentration Inequalities

Definition 1. L ∈ RP if there exists a probabilistic TM running in time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L =⇒ Pr[M(x) = 1] = 0.

Definition 2. L ∈ ZPP if there exists a probabilistic TM running in expected time poly(n) such that

x ∈ L =⇒ Pr[M(x) = 1] = 1

x /∈ L =⇒ Pr[M(x) = 1] = 0.

Markov’s Inequality: For any random variable X ≥ 0, and real number t ≥ 0, we have

Pr[X ≥ t] ≤ E[X]

t
.

Hoeffding’s Inequality: Let X1, . . . , Xn be independent, [0, 1]-valued random variables, and let X =∑n
i=1Xi. Then for all t > 0,

Pr[|X − E[X]| > t] ≤ 2 exp

(
−2t2

n

)
.

1 Proof that ZPP = RP ∩ coRP

Proof that ZPP ⊆ RP∩ coRP. Let L ∈ ZPP be decided by a zero-error PTM M running in expected
time p(n). We’ll first show that L ∈ RP. Here’s the algorithm.
Algorithm N(x)
On input x:

1. Run M on x for 3p(|x|) steps.

2. If M accepted, accept. If M either rejected or did not yet halt, reject.

1

Runtime analysis: The algorithm always halts after O(p(n)) steps, so it has polynomial worst-case runtime.
Correctness analysis: First suppose x ∈ L. Then by our assumption on M , we have E[TM,x] ≤ p(|x|). By
Markov, this implies

Pr[TM,x ≥ 3p(|x|)] ≤ 1

3
.

Hence, M halts on x with probability at least 2/3, and if it halts, it correctly accepts by zero-error. Therefore,
N accepts x with probability at least 2/3.

On the other hand, if x /∈ L, then with probability 1 we have that M either rejects (by zero error) or fails
to halt within 3p(|x|) steps. In either case, N correctly rejects.

The proof for ZPP ⊆ coRP is similar. The only change is that if M fails to halt, we accept.

Proof that RP ∩ coRP ⊆ ZPP. Let L ∈ RP ∩ coRP be decided by p(n) time RP machine M1 and
coRP machine M2. We’ll argue that the following PTM decides L with zero error.
Algorithm N(x)
On input x

Repeat the following indefinitely:

1. Run M1 on x. If it accepts, accept.

2. Run M2 on x. If it rejects, reject.

I’ll leave the proof of correctness and polynomial expected runtime for your homework.

2 Error Reduction

The constant 2/3 in the definitions of RP, coRP, and BPP may seem arbitrary – and that’s because they
are. These classes don’t change when 2/3 is replaced by any positive constant, in the case of RP and
coRP, or any constant > 1/2 in the case of BPP.

In fact, something stronger is true. The definition of BPP doesn’t change even when we replace the
error threshold with 1/2 + 1/poly(n) or with 1− 2−poly(n).

Theorem 3 (Error Reduction for BPP). Suppose M is a PTM running in time T (n) such that

x ∈ L =⇒ Pr[M(x) = 1] ≥ 1

2
+ ε

x /∈ L =⇒ Pr[M(x) = 1] ≤ 1

2
− ε.

We’ll abuse notation a bit and write these conditions together as “For all x, we have Pr[M(x) = L(x)] ≥
1
2 + ε.”

Then there exists a PTM M ′ running in time O(log(1/δ)
ε2

· T (n)) such that Pr[M ′(x) = L(x)] ≥ 1− δ.

That is, one can start with a PTM that beats random guessing by with advantage ε, and boost its success
probability to 1− δ, all with a modest blowup in runtime.

Before proving this, let’s see some examples of how to use it.

2

If I start with Pr[M(x) = L(x)] ≥ blank Then I get Pr[M(x) = L(x)] ≥ blank Using blank repetitions of M
1
2 + 1

n2
2
3 O

(
log 3

(1/n2)2

)
= O(n4)

2/3 1− 1
n2 O(log n)

2/3 1− 2−10n O(n)
1
2 + 1

n100 1− 2−n
−100

O(n300)
1
2 + 2−n 1− 2−n O(n · 22n)

Proof. Define the algorithm M ′(x) as follows.
On input x:

1. Run M(x) independently k = log(2/δ)
ε2

times, producing outputs b1, . . . , bk.

2. Out the majority vote of those outputs.

By construction, this has the stated runtime.
To analyze correctness, define the random variables

Xi =

{
1 if bi = L(x)

0 otherwise.

Why are these r.v.’s useful? Note that

• Our algorithm outputs the majority vote of the bi’s, which agree with L iff the majority of the Xi’s
are 1. In other words, our algorithm makes an error iff X < k/2 where X =

∑k
i=1Xi.

• Each Xi individually takes the value 1 with some advantage over random guessing, i.e., E[Xi] ≥
1/2 + ε. So E[X] ≥ k/2 + εk.

Putting these observations together and applying Hoeffding’s inequality, we have

Pr[M ′(x) ̸= L(x)] = Pr[X < k/2]

≤ Pr[|X − E[X]| > εk]

≤ 2 exp

(
−2(εk)2

k

)
≤ δ.

Theorem 4 (Error Reduction for RP). If M is a PTM deciding L with one-sided error, i.e.,

x ∈ L =⇒ Pr[M(x) = 1] ≥ ε

x /∈ L =⇒ Pr[M(x) = 1] = 0,

then the PTM M ′ obtained by repeating M independently k = O(log(1/δ)/ε) times and accepting if
at least one run accepts has one-sided error, and x ∈ L =⇒ Pr[M ′(x) = 1] ≥ 1− δ.

3

3 BPP ⊆ P/poly

One of the major aims of complexity theory is to understand the relationship between computational re-
sources. We’ll prove a few results which shed light on how randomness can be traded for other resources,
like advice and alternations.

The first result we’ll prove shows that randomized algorithms can be derandomized using nonuniform
advice.

Theorem 5. BPP ⊆ P/poly.

To prove this, let L ∈ BPP. First, we’ll state the following useful characterization of BPP languages
in terms of deterministic TMs operating with an additional random input.

Claim 6. A language L ∈ BPP iff there exists a deterministic 2-input TM M running in polynomial time,
and a polynomial p(n), such that

x ∈ L ⇐⇒ Pr
r←{0,1}p(|x|)

[M(x, r) = L(x)] ≥ 2/3.

The proof of this claim is similar to our proof that NP is characterized by polynomial-time certificate
verifiers. The difference is that this time, we interpret the (random) string r as encoding the sequence of
random transitions taken by a PTM.

The first thing we’ll do is error reduction, to improve the success probability to be exponentially close
to 1. That is, there exists a poly-time TM M ′ such that

x ∈ L ⇐⇒ Pr
r
[M ′(x, r) ̸= L(x)] ≤ 2−2n.

Now we’ll use the fact that we can convert poly-time deterministic TMs into poly-size circuits to obtain

x ∈ L ⇐⇒ Pr
r←{0,1}m

[C(x, r) ̸= L(x)] ≤ 2−2n

for some m = poly(n) and some circuit family where |C| = poly(n).
Now we’ll get rid of the randomness in the circuit family with the following claim.

Claim 7. For every n there exists an r∗ ∈ {0, 1}m such that C(x, r∗) = L(x) for every x ∈ {0, 1}m

Our final circuit family is obtained by “hardwiring” this good choice of r∗ into C, i.e., by defining
C∗(x) = C(x, r∗).

Proof of Claim. We prove this by the “probabilistic method”: We’ll show that a random choice of r works
positive probability, which in particular, shows that such an r exists.

Letting r ← {0, 1}m be uniformly random, define Bx,r to be the “bad” event that C(x, r) ̸= L(x). Then
by definition, for all x ∈ {0, 1}n, we have Prr[Bx,r] ≤ 2−2n.

Thus, the probability that r satisfies the claim is

4

Pr
r
[∀xC(x, r) = L(x)] = 1− Pr

r
[∃xC(x, r) ̸= L(x)]

= 1− Pr
r

 ⋃
x∈{0,1}n

Bx,r

≥ 1−

∑
x∈{0,1}n

Pr
r
[Bx,r] (union bound)

≥ 1− 2n · 2−2n

= 1− 2−2n > 0.

This result has some interesting consequences for understanding the relationship between NP and
BPP. Observe that if SAT had a fast randomized algorithm, i.e., SAT ∈ BPP, then we would have
SAT ∈ P/poly, which by the Karp-Lipton Theorem, would imply that PH collapses. So this gives us
evidence that SAT does not, in fact, have a fast randomized algorithm.

4 BPP and the Polynomial Hierarchy

It seems unlikely that NP ⊆ BPP, but what about the other direction? We know that RP ⊆ NP, but the
power of two-sided error doesn’t immediately appear compatible with just nondeterministic guessing. We
don’t yet know whether BPP is contained in NP, but we can at least place it in the polynomial hierarchy.

Theorem 8 (Sipser-Gács-Lautemann). BPP ⊆ Σp
2 ∩Πp

2.

Proof. Since BPP is closed under complement, it suffices to show that BPP ⊆ Σp
2. Using error reduction,

if L ∈ BPP, then there is a poly-time TM M such that

x ∈ L ⇐⇒ Pr
r∈{0,1}m

[M(x, r) = L(x)] ≥ 1− 2−n

for some m = poly(n).
For each x ∈ {0, 1}n, define the set

Sx = {r |M(x, r) = 1}

to be the set of coin tosses that cause M to accept input x. Then we have

x ∈ L =⇒ |Sx|
2m
≥ (1− 2−n)

x /∈ L =⇒ |Sx|
2m
≤ 2−n

Our goal will be to use two quantifiers to distinguish between these cases, i.e., to check whether Sx is
huge (almost everything) or tiny (almost nothing).

5

The idea is as follows. If Sx, then there will exist a small number of “additive shifts” of Sx whose union
cover all of the space {0, 1}m.

0, 1 𝑚𝑚

𝑆𝑆𝑥𝑥

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢1

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢2

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢3

Meanwhile, if Sx is tiny, then every small number of shifts will still fail to cover the whole space.
Here are the details. First, let us define what we mean by additive shifts.

Definition 9. For S ⊆ {0, 1}m, u ∈ {0, 1}m, let S ⊕ u = {z ⊕ u | z ∈ S}, where ⊕ denotes the bitwise
XOR.

Let k = 2m/n = poly(n). To distinguish our two cases, our goal is to prove the following two lemmas.

Lemma 10. If |Sx|/2m ≥ 1− 2−n, then there exist shifts u1, . . . , uk ∈ {0, 1}m such that
⋃k

i=1(Sx⊕ui) =
{0, 1}m.

Lemma 11. If |Sx|/2m ≤ 2−n, then for all shifts u1, . . . , uk ∈ {0, 1}m, we have
⋃k

i=1(Sx⊕ui) ⊊ {0, 1}m.

Assuming these lemmas, let us now see how we can distinguish our two cases using two quantifiers.

6

Starting with the YES case, we have by Lemma 10 that

x ∈ L =⇒ |Sx|/2m ≥ 1− 2−n

=⇒ ∃u1, . . . , uk ∈ {0, 1}m s.t.
k⋃

i=1

(Sx ⊕ ui) = {0, 1}m

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m r ∈
k⋃

i=1

(Sx ⊕ ui)

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m (∃i ∈ [k] r ⊕ ui ∈ Sx)

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m(∃i ∈ [k]M(x, r ⊕ ui) = 1).

Similarly, in the NO case, we have by Lemma 11 that

x /∈ L =⇒ ¬∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m(∃i ∈ [k]M(x, r ⊕ ui) = 1).

Thus, we can distinguish the two cases using a poly-length round of existential guessing, followed by a poly-
length round of universal guessing, and evaluation of the poly-time computable predicate “∃i ∈ [k]M(x, r⊕
ui) = 1.”

Now let’s prove the lemmas.

Proof of Lemma 11. It suffices to show that if |S|/2m ≤ 2−n, then for all sequences of k bitstrings u1, . . . , uk ∈
{0, 1}m, where k = 2m/n, we have that ∣∣∣∣∣

k⋃
i=1

S ⊕ ui

∣∣∣∣∣ < 2m.

to do this, we use the union bound to upper bound the left hand side via

k∑
i=1

|S ⊕ ui| = k|S| = 2m

n
· 2−n · 2m < 2m

for sufficiently large n, since m = poly(n).

Proof of Lemma 10. Now we want to show that if |S|/2m ≥ 1 − 2−n, there exist u1, . . . , uk such that⋃k
i=1 S⊕ui = {0, 1}m. We’ll do this via the probabilistic method, showing that a random choice of the u’s

works with positive probability.
Let us choose u1, . . . , uk ∈ {0, 1}m uniformly at random. It now suffices to show that

Pr
u

[
k⋃

i=1

S ⊕ ui = {0, 1}m
]
> 0

or equivalently, that

Pr

[
∃r ∈ {0, 1}m s.t. r /∈

k⋃
i=1

S ⊕ ui

]
< 1.

7

We bound the left hand side using a union bound by

∑
r∈{0,1}m

Pr

[
r /∈

k⋃
i=1

S ⊕ ui

]
=

∑
r∈{0,1}m

Pr[r /∈ S ⊕ u1] · Pr[r /∈ S ⊕ u2] · . . . · Pr[r /∈ S ⊕ uk] by independence

=
∑

r∈{0,1}m

k∏
i=1

Pr[r /∈ S ⊕ ui]

≤
∑

r∈{0,1}m
(2−n)k

≤ 2m · 2−n·2m/n

= 2−m < 1.

8

	Proof that ZPP= RPcoRP
	Error Reduction
	BPPP/poly
	BPP and the Polynomial Hierarchy

