
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 17:

Finish BPP ⊆ PH, Promise Problems, Randomized Reductions

Reading.

• Arora-Barak § 7.4-7.5

Last time: ZPP = RP ∩ coRP, Error Reduction, BPP ⊆ P/poly

1 BPP and the Polynomial Hierarchy

It seems unlikely that NP ⊆ BPP, but what about the other direction? We know that RP ⊆ NP, but the
power of two-sided error doesn’t immediately appear compatible with just nondeterministic guessing. We
don’t yet know whether BPP is contained in NP, but we can at least place it in the polynomial hierarchy.

Theorem 1 (Sipser-Gács-Lautemann). BPP ⊆ Σp
2 ∩Πp

2.

Proof. Since BPP is closed under complement, it suffices to show that BPP ⊆ Σp
2. Using error reduction,

if L ∈ BPP, then there is a poly-time TM M such that for all x ∈ {0, 1}∗,

Pr
r∈{0,1}m

[M(x, r) = L(x)] ≥ 1− 2−n

for some m = poly(n).
For each x ∈ {0, 1}n, define the set

Sx = {r | M(x, r) = 1}

to be the set of coin tosses that cause M to accept input x. Then we have

x ∈ L =⇒ |Sx|
2m

≥ (1− 2−n)

x /∈ L =⇒ |Sx|
2m

≤ 2−n

Our goal will be to use two quantifiers to distinguish between these cases, i.e., to check whether Sx is
huge (almost everything) or tiny (almost nothing).

The idea is as follows. If Sx, then there will exist a small number of “additive shifts” of Sx whose union
cover all of the space {0, 1}m.

1

0, 1 𝑚𝑚

𝑆𝑆𝑥𝑥

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢1

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢2

𝑆𝑆𝑥𝑥 ⊕ 𝑢𝑢3

Meanwhile, if Sx is tiny, then every small number of shifts will still fail to cover the whole space.
Here are the details. First, let us define what we mean by additive shifts.

Definition 2. For S ⊆ {0, 1}m, u ∈ {0, 1}m, let S ⊕ u = {z ⊕ u | z ∈ S}, where ⊕ denotes the bitwise
XOR.

Let k = 2m/n = poly(n). To distinguish our two cases, our goal is to prove the following two lemmas.

Lemma 3. If |Sx|/2m ≥ 1− 2−n, then there exist shifts u1, . . . , uk ∈ {0, 1}m such that
⋃k

i=1(Sx ⊕ ui) =
{0, 1}m.

Lemma 4. If |Sx|/2m ≤ 2−n, then for all shifts u1, . . . , uk ∈ {0, 1}m, we have
⋃k

i=1(Sx ⊕ ui) ⊊ {0, 1}m.

Assuming these lemmas, let us now see how we can distinguish our two cases using two quantifiers.

2

Starting with the YES case, we have by Lemma 3 that

x ∈ L =⇒ |Sx|/2m ≥ 1− 2−n

=⇒ ∃u1, . . . , uk ∈ {0, 1}m s.t.
k⋃

i=1

(Sx ⊕ ui) = {0, 1}m

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m r ∈
k⋃

i=1

(Sx ⊕ ui)

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m (∃i ∈ [k] r ⊕ ui ∈ Sx)

=⇒ ∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m(∃i ∈ [k]M(x, r ⊕ ui) = 1).

Similarly, in the NO case, we have by Lemma 4 that

x /∈ L =⇒ ¬∃u1, . . . , uk ∈ {0, 1}m∀r ∈ {0, 1}m(∃i ∈ [k]M(x, r ⊕ ui) = 1).

Thus, we can distinguish the two cases using a poly-length round of existential guessing, followed by a poly-
length round of universal guessing, and evaluation of the poly-time computable predicate “∃i ∈ [k]M(x, r⊕
ui) = 1.”

Now let’s prove the lemmas.

Proof of Lemma 4. It suffices to show that if |S|/2m ≤ 2−n, then for all sequences of k bitstrings u1, . . . , uk ∈
{0, 1}m, where k = 2m/n, we have that ∣∣∣∣∣

k⋃
i=1

S ⊕ ui

∣∣∣∣∣ < 2m.

to do this, we use the union bound to upper bound the left hand side via

k∑
i=1

|S ⊕ ui| = k|S| = 2m

n
· 2−n · 2m < 2m

for sufficiently large n, since m = poly(n).

Proof of Lemma 3. Now we want to show that if |S|/2m ≥ 1 − 2−n, there exist u1, . . . , uk such that⋃k
i=1 S⊕ui = {0, 1}m. We’ll do this via the probabilistic method, showing that a random choice of the u’s

works with positive probability.
Let us choose u1, . . . , uk ∈ {0, 1}m uniformly at random. It now suffices to show that

Pr
u

[
k⋃

i=1

S ⊕ ui = {0, 1}m
]
> 0

or equivalently, that

Pr

[
∃r ∈ {0, 1}m s.t. r /∈

k⋃
i=1

S ⊕ ui

]
< 1.

3

We bound the left hand side using a union bound by

∑
r∈{0,1}m

Pr

[
r /∈

k⋃
i=1

S ⊕ ui

]
=

∑
r∈{0,1}m

Pr[r /∈ S ⊕ u1] · Pr[r /∈ S ⊕ u2] · . . . · Pr[r /∈ S ⊕ uk] by independence

=
∑

r∈{0,1}m

k∏
i=1

Pr[r /∈ S ⊕ ui]

≤
∑

r∈{0,1}m
(2−n)k

≤ 2m · 2−n·2m/n

= 2−m < 1.

2 BPP-Complete Problems?

One notion that’s been conspicuously missing from our treatment of randomized computation is complete
problems. Let’s see what happens if we try to identify a BPP-complete problem. Consider the following
candidate (inspired, e.g., by our first NP-complete problem).

BPATM = {⟨M,x, 1t⟩ | PTM M accepts x within t steps w.p. ≥ 2/3}.
One can show that this is BPP-hard under poly-time reductions in exactly the same way we did it

for NP. The problem is that it isn’t known whether this language is in BPP! To illustrate the difficulty,
consider the natural candidate algorithm for solving this problem on a PTM:

On input ⟨M,x, 1t⟩:
Simulate M on x for t steps, and accept iff it accepts.

This works fine as long as, for every input x, the acceptance probability of M after t steps is either at least
2/3 or at most 1/3. But what if it’s, say 1/2? Then our algorithm should reject at least 2/3 of the time,
but only rejects 1/2 of the time. Now you might imagine fixing this with repetitions...but what if M ’s
acceptance probability is, say 2/3− 2−|x|?

This issue actually seems fundamental, and in fact, there are no known BPP-complete problems. The
workaround to this is to relax our definition of BPP, and indeed of languages themselves, to “promise
problems.”

Definition 5. A promise problem is a pair of sets (ΠY ,ΠN) such that ΠY ,ΠN ⊆ {0, 1}∗ and ΠY ∩ΠN = ∅.

The way you should interpret this is that ΠY is the set of “YES” instances to a problem and ΠN is the
set of “NO” instances. Anything outside of ΠY ∪ ΠN is a “don’t care” instance. An equivalent way of
thinking about this is that, to solve a promise problem (ΠY ,ΠN), you (an algorithm) are given an input x
that is promised to be in either ΠY or ΠN , and your job is to determine which is the case. This notion is
most interesting when it’s hard (possibly even undecidable) to determine whether the promise holds for an
input or not.

Example 6. Consider the unambiguous satisfiability problem USAT defined as follows: Given a Boolean
formula φ that is promised to be either unsatisfiable or to have exactly one satisfiying assignment, determine
which is the case.

4

To formalize this as a promise problem, we take

USATY = {φ| CNF φ has exactly one satisfying assignment}
USATN = {φ| CNF φ is unsatisfiable}.

A language L is a special case of a promise problem where ΠY = L,ΠN = L, and there are no “don’t
care”s.

Definition 7. A promise problem (ΠY ,ΠN) is in PromiseBPP if there exists a polynomial-time PTM
M such that

x ∈ ΠY =⇒ Pr[M(x) = 1] ≥ 2/3

x ∈ ΠN =⇒ Pr[M(x) = 1] ≤ 1/3.

With this definition in hand, we can now successfully describe PromiseBPP-complete problems. One
such problem is obtained by modifying BPATM to include the promise that the TM’s acceptance probability
is bounded away from 1/2. A similar problem that’s usually easier to work with is the “Circuit Accep-
tance Probability Problem”, which roughly captures the following question: Given a circuit C, what is the
probability that C accepts a random input x?

Definition 8. The Circuit Acceptance Probability Problem (CAPP) is the promise problem defined as fol-
lows.

ΠY = {⟨C, p⟩ | Pr
x
[C(x) = 1] ≥ p+ 1/10}

ΠN = {⟨C, p⟩ | Pr
x
[C(x) = 1] ≤ p− 1/10}.

3 Randomized Reductions and Valiant-Vazirani

(Deterministic) poly-time reductions help us study questions like “NP
?
= P” and “BPP

?
= P” and their

relationship to other problems. But how about questions like “NP
?
= RP”?

Recall the Unambiguous Satisfiability problem

USATY = {φ| CNF φ has exactly one satisfying assignment}
USATN = {φ| CNF φ is unsatisfiable}.

At first glance, you might imagine that USAT is easier than SAT itself. Imagine you’re given a YES
(satisfiable) instance φ, and you’re trying to find a satisfying assignment. If you’re promised that φ has at
most one satisfying assignment, you might imagine being able to use this information to guide your search.

The Valiant-Vazirani Theorem shows that this is not the case, and that (at least for randomized algo-
rithms), Unambiguous SAT is at least as hard as SAT itself.

Theorem 9 (Valiant-Vazirani). There exists a poly-time randomized algorithm A mapping n-variable CNF
formulas to n-variable CNF formulas such that

φ ∈ SAT =⇒ Pr[A(φ) ∈ USATY] ≥
1

8n
φ /∈ SAT =⇒ Pr[A(φ) ∈ USATN] = 1.

5

This result has a number of interesting consequences. (Left as exercises.) One is the headline statement
about the hardness of USAT:

Corollary 10. NP = RP if and only if USAT ∈ PrRP.

Another is an application to search-to-decision for SAT. Recall that the search-to-decision reduction
we saw builds a satisfying assignment to a formula φ by setting one variable at a time, solving the SAT
decision problem on an adaptively chosen sequence of inputs. If the satisfying assignment is unique, then
these inputs can be chosen non-adaptively, all in a single batch; hence, Valiant-Vazirani gives a non-adaptive
randomized search-to-decision reduction for SAT.

Proof idea. The reduction A will add randomly chosen additional constraints to φ to eliminate all but 1
satisfying assignment (if one exists).

In pictures. Suppose we have some additional information about our input formula φ: Either it’s unsatis-
fiable, or that the number of satisfying assignments is between 2k−1 and 2k.

0, 1 𝑛𝑛

𝑆𝑆

Let S be the set of satisfying assignments to φ.
We’ll add new constraints C1, . . . , Ck which each (almost) independently eliminate a random half of

{0, 1}n as possible satisfying assignments. The expected size of the portion of S that survives is 2−k · |S| ∈
[1/2, 1]. We’ll show that |S| = 1 with constant probability.

One remaining issue: How do we know how to set k? We don’t know! We’ll just guess it at random
from 1, . . . , n, which will be correct with probability 1/n.

6

	BPP and the Polynomial Hierarchy
	BPP-Complete Problems?
	Randomized Reductions and Valiant-Vazirani

