
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 19:

#P-Completeness, Permanent, Toda’s Theorem

Reading.

• Arora-Barak § 17.2-17.4

Last time: Proof of Valiant-Vazirani, Intro to Counting

Definition 1. The complexity class FP consists of all functions f : {0, 1}∗ → N such that f can be
computed in deterministic polynomial time.

Definition 2. A function f : {0, 1}∗ → N is in #P (pronounced “sharp-P”) if there exists a polynomial-time
deterministic TM M and a polynomial p : N → N such that

f(x) = #{u ∈ {0, 1}p(|x|) |M(x, u) = 1}.

That is, for every x, the function f(x) counts the number of witnesses u such that M(x, u) accepts.

Examples of problems in #P:

• # spanning trees

• #CYCLE

• #SAT

• #CKTSAT: Given a circuit C, how many satisfying assignments does it have?

• #INDSET

Lots of problems in statistical physics, AI, etc. involve sampling from an implicitly defined probability

distribution, i.e, µ(x) = p(x)∑
y p(y) where p(x) is efficiently computable, but the normalization constant (a.k.a.,

the partition function)
∑

y p(y) ∈ #P, and is often hard to compute.

1 Reductions Between Function/Counting Problems

To study the relationships between different counting problems, we’ll study two different ways of poly-time
reducing between them.

1

Option 1: Parsimonious reductions. You should think of these as the function-evaluation analogs of
Karp reductions (used to define NP-completeness and so forth).

Definition 3. A parsimonius reduction R from f to g is a poly-time computable function such that for all
x ∈ {0, 1}∗, we have

f(x) = g(R(x)).

Interpretation: If computing g is easy, then computing f is also easy.

Example 4. #CKTSAT parsimoniously reduces to #SAT. The reason is that the reduction from the deci-
sion version CKTSAT to SAT preserves the number of satisfying assignments.

Proof idea:

∧

∨ ∧

𝑥𝑥1 𝑥𝑥2 𝑥𝑥2 𝑥𝑥3

𝑎𝑎 𝑏𝑏

𝑐𝑐𝐶𝐶 𝑥𝑥 =
𝐶𝐶 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 is satisfiable ⇔
𝜓𝜓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is satisfiable, where

𝜓𝜓 𝑥𝑥, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ≔ 𝑎𝑎 = (𝑥𝑥1∨ 𝑥𝑥2)
∧ 𝑏𝑏 = (𝑥𝑥2∧ 𝑥𝑥2)
∧ 𝑐𝑐 = (𝑎𝑎 ∧ 𝑏𝑏)
∧ 𝑐𝑐

Convert to 3-variable 3-CNF

Example 5. The Cook-Levin Theorem is parsimonious, so there is a parsimonious reduction from every
function f ∈ #P to #SAT.

Theorem 6. #SAT is #P-complete under parsimonious reductions.

Option 2: Oracle reductions. These are analogs of Cook reductions. (I.e., language A Cook-reduces to
language B if A ∈ PB .) Oracle reductions are the more typical way to define #P-completeness.

We can generalize oracle access to a language to oracle access to a function as follows: We say that TM
M has oracle access to function g if it has oracle access to the language {⟨x, i⟩ | (g(x))i = 1}.

Definition 7. Let f, g : {0, 1}∗ → N. Then f poly-time oracle reduces to g if f ∈ FPg.

Oracle reductions are more powerful than parsimonious reductions. Why should we study them? For
one, there are natural examples of counting problems whose complexity is “obviously” equivalent, but which
we do not believe are related by efficient parsimonious reductions. For example:

2

Example 8. #(CNF)SAT poly-time reduces to #DNFSAT. The reduction is as follows.
On input CNF formula φ(x1, . . . , xn):

1. Use de Morgan’s laws to write ¬φ as a DNF ψ.

2. Query #DNFSAT on ψ, obtaining a count a.

3. Return 2n − a.

Definition 9. A function g : {0, 1}∗ → N is #P-complete if g ∈ #P and every function f ∈ #P poly-time
oracle reduces to g.

2 Valiant’s Theorem: Permament is #P-Hard

Let’s recall the definition of the determinant of a matrix A ∈ Rn×n:

det(A) =
∑
σ∈Sn

sgn(σ) ·
n∏

i=1

Ai,σ(i).

Here, Sn is the group of permutations over [n], and for a permutation σ,

sgn(σ) =

{
1 if σ has an even number of inversion(i < j s.t. σ(i) > σ(j))

−1 otherwise.

It is known that det ∈ FP, e.g., by doing Gaussian elimination until A is upper triangular, and then
multiplying the diagonal entries.

The matrix permanent is defined by removing the sign terms:

perm(A) =
∑
σ∈Sn

·
n∏

i=1

Ai,σ(i).

Define the function 0/1-perm to capture the problem of computing the matrix permanent of {0, 1}-
valued matrices.

Theorem 10. 0/1-perm is #P-complete.

Proof sketch. As usual, there are two things to prove.

0/1-perm ∈ #P: Let us introduce a combinatorial view of the matrix permanent, in terms of cycle covers.

Definition 11. Let G = ([n], E) be a directed graph, a permutation σ : [n] → [n] is a cycle cover for G if
(i, σ(i)) ∈ E for all i ∈ [n].

Example 12. Consider the following digraph on 4 vertices.

3

1

2

3

4

The permutation 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 4 is a cycle cover.
The permutation 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1 is not a cycle cover.

Given a matrix A, let GA be the digraph whose adjacency matrix is A.

Lemma 13. perm(A) = # cycle covers of GA.

Proof. From the definition,

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

=
∑
σ∈Sn

{
1 if Ai,σ(i) = 1 ∀i ∈ [n]

0 otherwise

=
∑
σ∈Sn

{
1 if (i, σ(i)) ∈ EA ∀i ∈ [n]

0 otherwise

= # cycle covers of GA.

Since checking whether a permutation is a cycle cover can be done in poly-time, this implies that count-
ing the number of cycle covers in a graph (and hence, computing the 0/1 permanent) is in #P.

Note that there’s nothing really special about the 0/1 permanent here. This proof generalizes to char-
acterize the integer permanent as summing the products of the weights along all possible weighted cycle
covers.

Also, see page 347 in Arora-Barak for a different useful characterization of the permanent as counting
perfect matchings in a bipartite graph.

0/1-perm is #P-hard: This is a quite involved proof involving some very clever gadget trickery. In broad
strokes, the structure of the proof goes as follows.

1. Reduce the #P-complete problem #SAT to integer perm. Idea: Map a CNF formula φ to a graph G
such that assignments to φ correspond to (structured sets of) cycle covers. Satisfying assignments will
all induce covers of weight k (for some parameter k depending on φ), while unsatisfying assignments
have weight 0.

4

2. Reduce integer perm to {−1, 0, 1}-perm by replacing weighted edges with sets of parallel paths.

3. Reduce {−1, 0, 1}-perm to {0, 1}-perm using modular arithmetic tricks.

3 PP and ⊕P

Recall that #P is the set of functions f such that there is polynomial-time deterministic TM M and a
polynomial p : N → N such that for all x,

f(x) = #{u ∈ {0, 1}p(|x|) |M(x, u) = 1}.

Any function evaluation problem naturally gives rise to decision problems that correspond to computing
individual bits of that function. We can further specialize our attention to the most significant bit and least
significant bit of f , which have natural interpretations.

Definition 14. A language L ∈ PP if there exists a poly-time deterministic TM M and polynomial p such
that

x ∈ L ⇐⇒ #{u ∈ {0, 1}p(|x|) |M(x, u) = 1} ≥ 1

2
· 2p(n).

Equivalently: L ∈ PP if there is a poly-time probabilistic TM M such that

x ∈ L ⇐⇒ Pr[M(x) = 1] ≥ 1

2
.

The canonical PP-complete problem is MAJSAT: φ ∈ MAJSAT ⇐⇒ the majority of assignments x
satisfy φ.

Lemma 15. PPP = P#P.

Proof. It’s enough to show that #P ⊆ FPPP.
To see this, let f ∈ #P, so f(x) = #{u ∈ {0, 1}p(|x|) | M(x, u) = 1} for some machine M .

We describe how to compute f in poly-time on a PP-oracle TM as follows. Let k = p(|x|). For each
N ∈ {0, 1, . . . , 2k}, let MN be the following TM:

On input x, ⟨b, u⟩:
If b = 0: Output M(x, u)
If b = 1: Output 1 iff u < N , and 0 otherwise.
Observe that for every x, we have #{⟨b, u⟩ ∈ {0, 1}k+1 |MN (x, ⟨b, u⟩) = 1} = f(x) +N .

Using a PP oracle, we can thus compare f(x) + N
?
≥ 1

2 · 2k+1 = 2k for any N . Now we can binary
search over N to find the smallest number N∗ for which f(x)+N∗ ≥ 2k, i.e., f(x)+N∗ = 2k, and output
the answer f(x) = 2k −N∗.

Definition 16. A language L ∈ ⊕P if there exists a poly-time deterministic TM M and polynomial p such
that

x ∈ L ⇐⇒ #{u ∈ {0, 1}p(|x|) |M(x, u) = 1} is odd.

The canonical ⊕P-complete problem is ⊕SAT: φ ∈ ⊕SAT ⇐⇒ #{x | φ(x) = 1} is odd.
We do not yet even know whether NP ⊆ P⊕P, but we do know from Valiant-Vazirani that NP ⊆

RP⊕P.

5

4 Toda’s Theorem

Alternation and counting give two ways of generalizing the class NP which, at first glance, may seem
incomparable in power. In 1991, Seinosuke Toda proved the stunning result that counting is, in fact, at least
as powerful as alternation.

Theorem 17 (Toda’s “First” Theorem). PH ⊆ BPP⊕P.

Theorem 18 (Toda’s “Second” Theorem). BPP⊕P ⊆ P#P.

Corollary 19 (“Toda’s Theorem”). PH ⊆ P#P.

I’ll sketch a proof of the “First Theorem” following Fortnow’s note, “A Simple Proof of Toda’s Theo-
rem.” The proof makes use of the following three facts:

1. Valiant-Vazirani: There is a poly-time randomized reduction A such that

φ ∈ SAT =⇒ Pr[A(φ) ∈ USATY] ≥
1

8n
=⇒ Pr[A(φ) ∈ ⊕SAT] ≥ 1

8n
φ /∈ SAT =⇒ Pr[A(φ) ∈ USATN] = 1 =⇒ Pr[A(φ) /∈ ⊕SAT] = 1.

Corollary 20. NP ⊆ RP⊕SAT ⊆ BPP⊕P. (Moreover, this proof relativizes.)

2. ⊕P⊕P = ⊕P. (Maybe we’ll prove this Thursday?)

3. If NP ⊆ BPP, then PH ⊆ BPP. (This generalizes the inductive proof that NP ⊆ P =⇒ PH ⊆
P.) Moreover, this proof relativizes.

Using the fact that the Corollary to Fact 1 implies relativizes, we have

NP⊕P ⊆ (BPP⊕P)⊕P = BPP(⊕P⊕P).

The equality holds because a BPP machine can make its “outer” ⊕P queries via its “inner” ⊕P oracle.
Now Fact 2 implies this latter class is just BPP⊕P. So using the relativizing version of Fact 3, we get

PH ⊆ PH⊕P ⊆ BPP⊕P.

6

	Reductions Between Function/Counting Problems
	Valiant's Theorem: Permament is #P-Hard
	PP and P
	Toda's Theorem

