
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 20:

Toda’s Theorem, Interactive Proofs

Reading.

• Arora-Barak § 17.4

Last time: #P-Completeness, Permanent, PP.

Definition 1. A language L ∈ PP if there exists a poly-time deterministic TM M and polynomial p such
that

x ∈ L ⇐⇒ #{u ∈ {0, 1}p(|x|) | M(x, u) = 1} ≥ 1

2
· 2p(n).

Equivalently: L ∈ PP if there is a poly-time probabilistic TM M such that

x ∈ L ⇐⇒ Pr[M(x) = 1] ≥ 1

2
.

The canonical PP-complete problem is MAJSAT: φ ∈ MAJSAT ⇐⇒ #φ ≥ n/2. Here, #φ :=
#{x | φ(x) = 1}. Last time, we proved a sense in which the decision class PP captures the full power of
counting:

Lemma 2. PPP = P#P.

Instead of asking for the most significant bit in a counting problem, one can also ask for the least
significant bit.

Definition 3. A language L ∈ ⊕P if there exists a poly-time deterministic TM M and polynomial p such
that

x ∈ L ⇐⇒ #{u ∈ {0, 1}p(|x|) | M(x, u) = 1} is odd.

The canonical ⊕P-complete problem is ⊕SAT: φ ∈ ⊕SAT ⇐⇒ #φ is odd.
We do not yet even know whether NP ⊆ P⊕P, but we do know from Valiant-Vazirani that NP ⊆

RP⊕P.

1 Toda’s Theorem

Alternation and counting give two ways of generalizing the class NP which, at first glance, may seem
incomparable in power. In 1991, Seinosuke Toda proved the stunning result that counting is, in fact, at least
as powerful as alternation.

Theorem 4 (Toda’s “First” Theorem). PH ⊆ BPP⊕P.

1

Theorem 5 (Toda’s “Second” Theorem). BPP⊕P ⊆ P#P.

Corollary 6 (“Toda’s Theorem”). PH ⊆ P#P.

I’ll sketch a proof of the “First Theorem” following Fortnow’s note, “A Simple Proof of Toda’s Theo-
rem.” The proof makes use of the following three facts:

1. Valiant-Vazirani: There is a poly-time randomized reduction A such that

φ ∈ SAT =⇒ Pr[#A(φ) = 1] ≥ 1

8n
=⇒ Pr[A(φ) ∈ ⊕SAT] ≥ 1

8n
φ /∈ SAT =⇒ Pr[#A(φ) = 0] = 1 =⇒ Pr[A(φ) /∈ ⊕SAT] = 1.

Corollary 7. NP ⊆ RP⊕SAT ⊆ BPP⊕P. (Moreover, this proof relativizes.)

2. ⊕P⊕P = ⊕P. (The proof uses some counting mod 2 tricks. I’ll leave it to you as a bonus problem.)

3. If NP ⊆ BPP, then PH ⊆ BPP. (This generalizes the inductive proof that NP ⊆ P =⇒ PH ⊆
P.) Moreover, this proof relativizes.

Proof of Toda 1. Using the fact that the Corollary to Fact 1 implies relativizes, we have

NP⊕P ⊆ (BPP⊕P)⊕P = BPP(⊕P⊕P).

The equality holds because a BPP machine can make its “outer” ⊕P queries via its “inner” ⊕P oracle.
Now Fact 2 implies this latter class is just BPP⊕P. So using the relativizing version of Fact 3, we get

PH ⊆ PH⊕P ⊆ BPP⊕P.

Now let’s sketch a proof Toda’s “Second Theorem.” The proof relies on a construction of a “modulus-
amplifying polynomial” defined as follows.

Definition 8. An integer polynomial p(s) is k-modulus amplifying if

s ≡ 0 (mod 2) =⇒ p(s) ≡ 0 (mod 2k)

s ≡ −1 (mod 2) =⇒ p(s) ≡ −1 (mod 2k).

There’s a very simple, efficiently computable, construction of such polynomials as follows. Define
g(s) = 3s4 + 4s3. One can check, inductively, that p(s) = g(g(. . . g(s))) obtained by composing g a total
of log k times does the trick.

The second idea is that, for any polynomial p with natural coefficients, we can convert any Boolean
formula φ into another formula φ′ such that #φ′ = p(#φ). This is because we can “multiply” counts of
satisfying assignments:

#(φ1(x) ∧ φ1(y)) = #φ1 ·#φ2

as well as add them:
#((φ1(x) ∧ y = 0) ∨ (φ2(y) ∧ x = 0)) = #φ1 +#φ2

2

Proof Sketch of Toda 2. One can show that ⊕SAT is complete for BPP⊕P under randomized reductions
with two-sided error. That is, for every L ∈ BPP⊕P there’s a poly-time algorithm A(x; r) mapping
x 7→ φx,r such that

x ∈ L =⇒ Pr
r
[#φx,r ≡ −1 (mod 2)] ≥ 2/3,

x /∈ L =⇒ Pr
r
[#φx,r ≡ 0 (mod 2)] ≥ 2/3.

Let k = |r|+ 1. Then using a k-modulus amplifying polynomial, we can, in poly-time further map φx,r 7→
φ′
x,r such that

x ∈ L =⇒ Pr
r
[#φ′

x,r ≡ −1 (mod 2k)] ≥ 2/3 =⇒
∑
r

#φ′
x,r ∈

[
−2|r|,−2

3
2|r|

]
(mod 2k)

x /∈ L =⇒ Pr
r
[#φ′

x,r ≡ 0 (mod 2k)] ≥ 2/3 =⇒
∑
r

#φ′
x,r ∈

[
−1

3
2|r|, 0

]
(mod 2k).

Since these ranges are disjoint, they can be distinguished using one #P oracle call to count the total number
of satisfying assignments to all possible formulas φ′

x,r that can arise in the reduction.

2 Interactive Proofs

Mathematical proofs are closely related to the certificate-verifier definition of NP as follows. Recall that a
language L ∈ NP if there exists a poly-time verifier V and polynomial p such that

(Completeness) x ∈ L =⇒ ∃π ∈ {0, 1}p(|x|) V (x, π) = 1

(Soundness) x /∈ L =⇒ ∀π∗ ∈ {0, 1}p(|x|) V (x, π∗) = 0.

The analogy is as follows.

• Think of x as a mathematical statement

• Think of x ∈ L as meaning “x is a true theorem”

• π is a “proof” that x ∈ L.

The “completeness” of a proof system means that every true theorem has a (efficiently checkable) proof.
The “soundness” of such a system means that it is impossible to prove false theorems.

𝑥𝑥
Prover 𝑃𝑃 Verifier 𝑉𝑉
𝜋𝜋

“Accept” if 𝑉𝑉 𝑥𝑥,𝜋𝜋 = 1
“Reject” otherwise

3

An “interactive” proof allows a prover and a verifier to have an interactive conversation to convince the
verifier of the the validity of a statement.

𝑥𝑥
𝑃𝑃 𝑉𝑉
𝑚𝑚1

Accept: 〈𝑃𝑃,𝑉𝑉〉(𝑥𝑥) = 1
Reject: 〈𝑃𝑃,𝑉𝑉〉(𝑥𝑥) = 0

𝑚𝑚2

𝑚𝑚𝑘𝑘

…

How can we formalize this? We’ll model P and V as computing sequences of “next message” functions:

m1 = P1(x)

m2 = V1(x,m1)

m3 = P2(x,m1,m2)

...

m2i+1 = Pi+1(x,m1, . . . ,m2i)

m2i+2 = Vi+1(x,m1, . . . ,m2i+1)

Motivation for Interactive Proofs:

• Interaction is a resource we have in real life!

• Interactive proofs turn out to be far more powerful than static proofs.

– We’ll see that the class of languages admitting efficient interactive proofs, IP = PSPACE.

– Interactive proofs can have additional properties that static proofs cannot have, such as “zero
knowledge”: the verifier “learns nothing more” than the validity of the statement that x ∈ L.
This is a central concept in cryptography.

• Fast interactive proofs have other modern computing applications, e.g., to outsourcing computation
to an untrusted server. One can, say, delegate the computation of a low-depth, poly-size circuit to the
cloud and get a proof that the computation was performed correctly with only Õ(n) verification time.
(Goldwasser-Kalai-Rothblum, “Interactive Proofs for Muggles.”)

Unfortunately, there’s a problem with our current definition of interactive proofs if we want to get all of
these amazing consequences: a deterministic verifier isn’t enough.

To see this, let dIP be the class of languages L with interactive proofs where the verifier V runs in
deterministic polynomial-time, the total communication |m1|+ · · ·+ |mk| = poly(|x|), and

x ∈ L =⇒ ∃P ⟨P, V ⟩(x) = 1

x /∈ L =⇒ ∀P ∗ ⟨P ∗, V ⟩(x) = 0.

4

Then dIP = NP. Why? Given a dIP interactive proof for a language L as described above, define an
NP certificate w = (m1, . . . ,mk). Then an NP verifier can just check that m2 = V1(x,m1),m4 =
V2(x,m1,m2,m3), . . . and that the dIP verifier accepts at the end.

For gain power from interaction, we’ll augment our verifier with randomness, modeled via an additional
random string as input.

m1 = P1(x)

m2 = V1(x,m1; r)

m3 = P2(x,m1,m2)

m4 = V2(x,m1,m2,m3; r)

...

Definition 9. IP is the class of languages L admitting interactive proofs where the verifier V runs in
randomized poly-time, the total communication is poly(|x|), and

x ∈ L =⇒ ∃P Pr[⟨P, V ⟩(x) = 1] ≥ 2/3,

x /∈ L =⇒ ∀P ∗ Pr[⟨P ∗, V ⟩(x) = 1] ≤ 1/3.

Comments on the definition.

• It’s important that V is randomized, but we can assume WLOG that P is deterministic. This is because
we can choose P to always produce the responses that maximize V ’s probability of accepting. This
idea can further be used to show that IP ⊆ PSPACE.

• The constant 2/3, as usual, is not important. One can amplify it by repeating the protocol sequentially
and taking the majority vote.

• The definition of IP is stated with “private coins”: The verifier’s coin tosses are kept secret from the
prover. Later, we’ll also study “public coin” protocols, and see that they don’t lose much power.

2.1 Intuition: Why do Randomness and Interaction Help?

In the Impossible Whopper Challenge, Victor holds two burgers, B0 and B1. One is supposed to be a
traditional Whopper and the other is an Impossible Whopper. He cannot tell them apart, but his friend
Peggy claims she can. How can Peggy convince Victor that the burgers are actually different?

5

𝐵𝐵0,𝐵𝐵1

𝑃𝑃 𝑉𝑉

Guess burger 𝑐𝑐𝑐

Choose 𝑐𝑐 ∈ {0, 1} at random

Give Peggy a bite of 𝐵𝐵𝑐𝑐

Accept iff 𝑐𝑐′ = 𝑐𝑐

Completeness: If B0 ̸= B1, then Pr[c′ = c] = 1.
Soundness: If B0 = B1, then Pr[c′ = c] ≤ 1/2 (which can be amplified by repetition).

2.2 Graph Non-Isomorphism

This silly example actually inspires an interesting interactive proof for the graph non-isomorphism problem.
Let G = ([n], E) be an undirected graph. For a permutation π : [n] → [n], define π(G) = ([n], {(π(i), π(j)) |

(i, j) ∈ E}) to be the same graph, but with all vertex labels permuted under π.
Write G0

∼= G1 (read: G0 and G1 are isomorphic) if there exists π ∈ Sn such that G0 = π(G1).
Define

GI = {⟨G0, G1⟩ | G0
∼= G1}.

Then GI ∈ NP, taking π as the certificate.

• GI is currently not known to be in P. (A relatively recent breakthrough of Babai’16 showed that it can
be solved in quasi-polynomial time.)

• The complementary problem GNI = GI is not known to be in NP, but it does have an efficient
interactive proof, described below.

Claim 10. GNI ∈ IP.

6

𝐺𝐺0,𝐺𝐺1

𝑃𝑃 𝑉𝑉

Guess 𝑐𝑐𝑐

Choose 𝑐𝑐 ∈ {0, 1} at random
Sample 𝜋𝜋 ← 𝑆𝑆𝑛𝑛 at random
Send 𝜋𝜋(𝐺𝐺𝑐𝑐)

Accept iff 𝑐𝑐′ = 𝑐𝑐

Proof. The computation and check done by V run in poly-time. For correctness, first, if G0 ̸∼= G1, then
exactly one of these graphs is isomorphic to π(Gc). So P can determine c′ = c and hence

Pr[⟨P, V ⟩(G0, G1) = 1] = 1.

On the other hand, if G0
∼= G1, then both graphs are isomorphic to π(Gc). So no matter what strategy

P ∗ is used to guess c, we have
Pr[⟨P ∗, V ⟩(G0, G1) = 1] ≤ 1/2.

7

	Toda's Theorem
	Interactive Proofs
	Intuition: Why do Randomness and Interaction Help?
	Graph Non-Isomorphism

