
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 21:

Arthur-Merlin Proofs

Reading.

• Arora-Barak § 8.2

Last time: Toda’s Theorem, Interactive Proofs

Definition 1. IP is the class of languages L admitting interactive proofs where the verifier V runs in
randomized poly-time, the total communication is poly(|x|), and

x ∈ L =⇒ ∃P Pr[⟨P, V ⟩(x) = 1] ≥ 2/3, (completeness)

x /∈ L =⇒ ∀P ∗ Pr[⟨P ∗, V ⟩(x) = 1] ≤ 1/3 (soundness).

1 Graph Non-Isomorphism

The Impossible Whopper example we did last time actually inspires an interesting interactive proof for the
graph non-isomorphism problem.

Let G = ([n], E) be an undirected graph. For a permutation π : [n] → [n], define π(G) = ([n], {(π(i), π(j)) |
(i, j) ∈ E}) to be the same graph, but with all vertex labels permuted under π.

Write G0
∼= G1 (read: G0 and G1 are isomorphic) if there exists π ∈ Sn such that G0 = π(G1).

Define
GI = {⟨G0, G1⟩ | G0

∼= G1}.

Then GI ∈ NP, taking π as the certificate.

• GI is currently not known to be in P. (A relatively recent breakthrough of Babai’16 showed that it can
be solved in quasi-polynomial time.)

• The complementary problem GNI = GI is not known to be in NP, but it does have an efficient
interactive proof, described below.

Claim 2. GNI ∈ IP.

1

𝐺𝐺0,𝐺𝐺1

𝑃𝑃 𝑉𝑉

Guess 𝑐𝑐𝑐

Choose 𝑐𝑐 ∈ {0, 1} at random
Sample 𝜋𝜋 ← 𝑆𝑆𝑛𝑛 at random
Send 𝜋𝜋(𝐺𝐺𝑐𝑐)

Accept iff 𝑐𝑐′ = 𝑐𝑐

Proof. The computation and check done by V run in poly-time. For correctness, first, if G0 ̸∼= G1, then
exactly one of these graphs is isomorphic to π(Gc). So P can determine c′ = c and hence

Pr[⟨P, V ⟩(G0, G1) = 1] = 1.

On the other hand, if G0
∼= G1, then both graphs are isomorphic to π(Gc). So no matter what strategy

P ∗ is used to guess c, we have
Pr[⟨P ∗, V ⟩(G0, G1) = 1] ≤ 1/2.

2 Bounded Rounds and Public Coins

We defined the class IP to consist of languages with (private coin) interactive proofs using an arbitrary
polynomial number of messages. We can refine the definition by taking IP[k] to be the class of languages
with proofs using k messages, where k might be a constant or it might be a growing function of n. In this
notation, IP = IP[poly(n)].

We can also consider interactive proofs where we restrict the verifier to reveal its coin tosses. Without
loss of generality, we can assume that random coin tosses are all its sends to the prover, since any additional
computation could be done by the prover itself. This gives rise to public coin or “Arthur-Merlin” proofs.

Definition 3. For every k, the class AM[k] consists of languages with k-round interactive proofs where the
verifier’s messages are random bits. (And it is not allowed to access randomness beyond the bits it sends.)

The whimsical name comes from the following analogy (Babai-Moran, “Arthur-Merlin games: A ran-
domized proof system, and a hierarchy of complexity classes”).

King Arthur recognizes the supernatural intellectual abilities of Merlin but does not trust him.
How should Merlin convince the intelligent but impatient King that a string x belongs to a

2

given language L? . . . An Arthur-Merlin protocol defines a combinatorial game, to be played
by Arthur, whose moves are random, and Merlin, who is capable of making optimal moves.

Messages Private coins Public coins
poly(n) IP = IP[poly] AM[poly] (= IP)

k IP[k] AM[k] =

k︷ ︸︸ ︷
AMA . . .

2 IP[2] AM
2 (Prover speaks first) MA MA

Low levels of the “AM hierarchy” admit very clean descriptions that are worth unpacking.

Definition 4. A language L ∈ MA if there exists a deterministic poly-time V such that

x ∈ L =⇒ ∃π Pr
r
[V (x, π, r) = 1] ≥ 2/3

x /∈ L =⇒ ∀π∗ Pr
r
[V (x, π∗, r) = 1] ≤ 1/3.

Definition 5. A language L ∈ AM if there exists a deterministic poly-time V such that

x ∈ L =⇒ Pr
r
[∃πV (x, π, r) = 1] ≥ 2/3

x /∈ L =⇒ Pr
r
[∃π∗V (x, π∗, r) = 1] ≤ 1/3

≡ Pr
r
[∀π∗V (x, π∗, r) = 0] ≥ 2/3.

Proposition 6. MA ⊆ AM

Proof. Let L ∈ MA, with associated verifier V . Repeat the verifier O(p(n)) times (using the same proof,
but fresh randomness) to get

x ∈ L =⇒ ∃π ∈ {0, 1}p(n) Pr[V ′(x, π, r) = 1] ≥ 1− 2−2p(n)

x /∈ L =⇒ ∀π∗ ∈ {0, 1}p(n) Pr[V ′(x, π∗, r) = 1] ≤ 2−2p(n).

Now consider the following AM protocol for L: On challenge r, the prover responds with the “good”
choice of π from the MA protocol. Then we have

x ∈ L =⇒ Pr[V ′(x, π, r) = 1] ≥ 1− 2−2p(n) ≥ 2/3

x /∈ L =⇒ Pr[∃π∗V ′(x, π∗, r) = 1]

≤
∑

π∗∈{0,1}p(n)

Pr[V ′(x, π∗, r) = 1]

≤ 2p(n) · 2−2p(n) = 2−p(n) ≤ 1/3.

Proposition 7. MA ⊆ Σp
2 ∩Πp

2 and AM ⊆ Πp
2.

Proof idea: The proofs are similar to the proof that BPP ⊆ Σp
2 – Basically, that proof allows one to

replace every Arthur message by a round of existential and a round of universal guessing, in either order.

Proposition 8. For any constant k, we have AM[k] = AM(= AM[2]).

Proof idea: Generalizing Proposition 6 lets us repeatedly switch and collapse Merlin and Arthur moves.

3

3 Approximate Counting in AM

For a function f : {0, 1}∗ → N, define the promise problem Gap2f by

Gap2fY = {⟨x, k⟩ | f(x) ≥ 2k}

Gap2fN =

{
⟨x, k⟩ | f(x) ≤ 1

2
· 2k

}
.

This captures the computational problem of estimating the value of f up to a constant factor. It’s also
called the “set size lower bound” problem, since the goal is to establish a lower bound on f(x), interpreted
as the size of a set of certificates for an NP relation. On your homework, you (essentially) showed that if
f ∈ #P, then Gap2f ∈ PromiseBPPNP. That proof actually shows Gap2f ∈ PromiseAM.

To see this, let f(x) = #{u ∈ {0, 1}m | M(x, u) = 1} for some poly-time TM M , and let Hm,k =
{h : {0, 1}m → {0, 1}k+1} be an efficiently sampleable/computable family of pairwise independent hash
functions. The consider the following two-message interactive proof for the Gap2f problem:

Prover Verifier
Sample ℎ: 0, 1 𝑚𝑚 → 0, 1 𝑘𝑘+1 from a
pairwise independent hash family 𝑯𝑯𝑚𝑚,𝑘𝑘

ℎ

Try to find 𝑢𝑢 ∈ 0, 1 𝑚𝑚 such that
𝑀𝑀 𝑥𝑥,𝑢𝑢 = 1 and ℎ 𝑢𝑢 = 0𝑘𝑘+1 𝑢𝑢

Accept iff
𝑀𝑀 𝑥𝑥,𝑢𝑢 = 1 and ℎ 𝑢𝑢 = 0𝑘𝑘+1

Input: 〈𝑥𝑥, 𝑘𝑘〉

Completeness: If f(x) ≥ 2k, then

Pr
h
[∃u s.t. M(x, u) = 1 ∧ h(u) = 0k+1] ≥ 1

3

using a Valiant-Vazirani style concentration argument. Meanwhile,
Soundness: If f(x) ≤ 1

22
k, then

Pr
h
[∃u s.t. M(x, u) = 1 ∧ h(u) = 0k+1] ≤ 1

4
.

To get an AM protocol, we have to “shift” the acceptance probabilities a bit. This can be done by
repeating the protocol a few times in parallel, and accepting iff the fraction of accepting iterations is, say, at
least 7/24.

4

4 Consequences of Approximate Counting Protocol

4.1 Graph Non-Isomorphism

Recall that GNI = {⟨G1, G2⟩ | G1 ̸∼= G2}. The first interactive proof for GNI we saw seemed to make
essential use of the verifier’s ability to hide its randomness from the prover. It turns out that one can use a
reduction to approximate counting to give a public coin protocol for this problem.

Proposition 9. GNI ∈ AM.

Proof sketch. Given two graphs G1, G2 on n vertices, define

f(G1, G2) = #{H | H ∼= G1 or H ∼= G2}.

Morally speaking, this is a #P counting problem, where the certificate is a permutation π such that either
π(H) = G1 or π(H) = G2.1

If G1
∼= G2, then (as long as the graph has no nontrivial automorphisms), we have f(G1, G2) = n!.

On the other hand, if G1 ̸∼= G2, then (again, assuming no nontrivial automorphisms for either graph), we
have f(G1, G2) = 2n!. Running our approximate counting protocol with k = log(2n!) thus gives an AM
protocol for this problem.

To deal with the issue of automorphisms, i.e., permutations π that take a graph to itself, we modify our
definition of f to

f(G1, G2) = #{(H,π) | (H ∼= G1 or H ∼= G2) and π(H) = H}.

One can verify, using the fact that the set of automorphisms of a graph is a subgroup of Sn, that for any pair
of graphs, we have G1

∼= G2 =⇒ f(G1, G2) = n! and G1 ̸∼= G2 =⇒ f(G1, G2) = 2n!.

This result has the following interesting consequence:

Theorem 10. If GI is NP-complete, then PH collapses.

Proof. If GI is NP-complete, then GNI is coNP-complete. This implies coNP ⊆ AM. Now we have

Σp
2 = ∃∀P
= ∃coNP

⊆ ∃AM

= MAM

= AM

⊆ Πp
2,

so the polynomial hierarchy collapses to the second level.
1The reason why this isn’t quite correct is that we should be counting certificates themselves. More accurately, we have

f ∈ # ·NP, defined as the set of functions g for which g(x) = #{u | ∃v s.t. M(x, u, v) = 1} where M runs in poly time.
(See, e.g., Hemaspaandra-Vollmer, “The Satanic Notations: Counting Classes beyond #P and Other Definitional Adventures.”)
The approximate counting protocol we saw works for this larger class as well.

5

4.2 Simulating Private Coins with Public Coins

One can (in a sense) generalize the idea behind our proof that GNI ∈ AM to show

Theorem 11 (Goldwasser-Sipser). For every k computable in poly(n) time, we have

IP[k] ⊆ AM[k + 2].

The basic idea is to use the approximate counting protocol to establish a lower bound on the number of
random strings that would have caused the private coin verifier to accept in the original protocol.

6

	Graph Non-Isomorphism
	Bounded Rounds and Public Coins
	Approximate Counting in AM
	Consequences of Approximate Counting Protocol
	Graph Non-Isomorphism
	Simulating Private Coins with Public Coins

