
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 22:

IP = PSPACE

Reading.

• Arora-Barak § 8.3

Last time: Arthur-Merlin (Public Coin) Proofs

An Abbreviated History. See Babai’s entertaining retrospective, “E-mail and the unexpected power of
interaction” for more.

Mid-80’s Goldwasser-Micali-Rackoff introduce IP and zero-knowledge proofs and study the quadratic
non-residuosity problem. Babai independently introduces AM and public coin proofs, initially to
study matrix group problems.

1987 Goldreich-Micali-Wigderson show that GNI ∈ IP.

1987 Negative results: Boppana-Håstad-Sipser show coNP ̸⊆ AM unless PH collapses. Fortnow-Sipser
give an oracle A such that coNPA ̸⊆ IPA. So interactive proofs might not be much more powerful
than static ones, or at least, proving so requires non-relativizing techniques.

11/27/89 Nisan: P#P ⊆ MIP, i.e., the permanent has a multi-prover interactive proof.

12/13/89 Lund-Fortnow-Karloff-Nisan: P#P ⊆ IP.

12/26/89 Shamir: PSPACE = IP.

1 IP ⊆ PSPACE

This is the “easy” direction. Here’s the idea. Let L ∈ IP with poly-time verifier V . We’ll show that we can
compute, in polynomial space, the value of

max
P ∗

Pr[⟨P ∗, V ⟩(x) = 1].

It then suffices to check if this values is at least 2/3, in which case we accept, or at most 1/3 in which case
we reject.

To do this, imagine (as a thought experiment) constructing the following tree:

1

𝑉𝑉 speaks

𝑃𝑃 speaks

𝑃𝑃 speaks

0 1 1 0 1 0 1 1 1 0 0 1 0 0 𝑉𝑉 makes a decision

…

Label with max value over children

Label with average value over children
poly(𝑛𝑛)
depth

2poly(𝑛𝑛) branching factor

The label on node represents the success probability of the best prover strategy given the history of the
protocol up to that point. So the value at the root gives the success probability of the best prover strategy
overall. By evaluating the node labels via a post-order traversal, we can compute the value at the root in
polynomial space.

2 Arithmetization

Recall from Toda’s Theorem that
PH ⊆ P#P ⊆ PSPACE.

We’ll work our way up to our goal by first showing the weaker (but still powerful) statement that P#P ⊆ IP.
To do this, it suffice to give an interactive proof for the following decisional version of the #SAT problem:

#SATD = {⟨φ, k⟩ | CNF φ has exactly k satisfying assignments}.

The first step is to think about this problem in a more algebraic way. Observe that

φ has k satisfying assignments ⇐⇒
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

φ(x1, . . . , xn) = k

⇐⇒
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

φ(x1, . . . , xn) = k mod p for prime p ∈ [2n, 2n+1]

⇐⇒
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

F (x1, . . . , xn) = k mod p

where F is a polynomial over the integers and F (x1, . . . , xn) = φ(x1, . . . , xn) for all x ∈ {0, 1}n.
We can construct such an integer polynomial by arithmetizing the formula φ gatewise:

• Replace x ∧ y with xy

2

• Replace ¬x with 1− x

• Replace x ∨ y = x ∧ y with 1− (1− x)(1− y).

Example 1. The arithmetization of the formula φ(x) = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) is F (x) =
(1− (1− x1)x2(1− x3))(1− (1− x1)(1− x4)x5).

Properties of SAT arithmetiziation: If φ has n variables and m clauses, then:

• F is computed by an arithmetic formula of size O(m+ n)

• degF = O(m) = O(n3)

• The conversion to an arithmetic formula takes polynomial time.

Thus, to solve #SATD, it suffices to give an interactive protocol solving the more general problem:

Theorem 2. There exists a poly-time interactive proof for the following problem. Given as input an arith-
metic circuit F of degree d, a prime p, and an integer k:

Completeness If
∑

x F (x) = k mod p, then Pr[⟨P, V ⟩(F, p, k) = 1] = 1.

Soundness If
∑

x F (x) ̸= k mod p, then Pr[⟨P, V ⟩(F, p, k) = 1] ≤ dn
p .

3 Sumcheck Protocol

The “sumcheck protocol” is a recursively defined interactive protocol for the above problem. Each step of
the recursion decreases the number of variables n by 1.

Base case (n = 1): The verifier checks itself that k1 =
∑

x1∈{0,1} F1(x1).

Recursive case:

• Define the univariate polynomial

g(t) =
∑

x1,...,xn−1∈{0,1}n−1

Fn(x1, . . . , xn−1, t).

• Prover sends the description of a polynomial g∗(t) (say, specified by d coefficients, using O(nd) bits)
that it claims is equal to g(t).

• Verifier checks that g∗(0) + g∗(1) = kn mod p (rejecting if not.) Then recursively call the same
protocol on ⟨Fn−1, p, kn−1⟩ where

– r ∈ {0, 1, . . . , p− 1} is uniformly random

– kn−1 = g∗(r)

– Fn−1(x1, . . . , xn−1) = F (x1, . . . , xn−1, r).

3

3.1 Analysis

Completeness: If the claim is correct, then the prover can send g(t) in every round, and the verifier always
accepts.

Soundness: If the claim is false, we’ll show that in each round, either:

1. V catches P ∗ with probability 1, or

2. With probability at least 1 − d
p , we have that P ∗ is forced into having to try to prove a false claim in

the next round.

By induction and a union bound, we have that the probability that V catches P ∗ is at least 1− n · d
p .

To analyze one round: Suppose
∑

x F (x) ̸= k mod p. Then there are two cases:

Case 1: The prover sends the actual polynomial g(t). Then g(0) + g(1) ̸= k mod p, so the verifier
catches the lie with probability 1.

Case 2: The prover sends some other polynomial g∗ ̸= g. Since they have degree at most d, g∗ agrees
with g on at most d points, so the probability that the next claim the prover will have to work with is true is

Pr
r
[g∗(r) = g(r)] ≤ d

p
.

4 PSPACE ⊆ IP

To show that PSPACE ⊆ IP, we’ll sketch how to modify the sumcheck protocol can handle the PSPACE-
complete problem TQBF. Let

Ψ = ∀x1∃x2 . . . ∃xnφ(x1, . . . , xn)

be a fully quantified Boolean formula, and assume WLOG that each xi represents a single bit.

Idea 1: Observe that

Ψ ∈ TQBF ⇐⇒
∏

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

F (x1, . . . , xn) ̸= 0,

where F is the arithmetization of φ. One could then apply the sumcheck protocol, with the modification
that when handling a ∀ quantifier, one should check the product g∗(0) · g∗(1) instead of the sum.

The problem with this is that polynomial multiplication increases degree, resulting in a final polynomial
with degree as high as 2Ω(n). In general, this is too long for the prover to transmit to the verifier.

Idea 2: We only care that our polynomial representation holds on Boolean inputs, where x2i = xi for every
variable i. (And thus, xki = xi for every k.) So we can replace our polynomials with their “multilineariza-
tions” which agree with them on all Boolean inputs but have individual degree 1 on every variable.

More precisely, define the multilinearization operator Li by

(LiF)(x) = xiF (x1, . . . , xi−1, 1, xi+1, . . . , xn) + (1− xi)F (x1, . . . , xi−1, 0, xi+1, . . . , xn)

4

This doesn’t change the value of F on Boolean inputs, but has the effect of reducing the individual degree
on variable xi down to 1. Thus, we have

Ψ ∈ TQBF ⇐⇒
∏

x1∈{0,1}

L1

∑
x2∈{0,1}

L1L2 · · ·
∑

xn∈{0,1}

L1L2 . . . LnF (x1, . . . , xn) ̸= 0,

which (modulo a large prime) we can verify using the sumcheck protocol to peel off one Π,Σ or L operator
in each round.

5

	IPPSPACE
	Arithmetization
	Sumcheck Protocol
	Analysis

	PSPACEIP

