
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 23:

PCP Theorem, Hardness of Approximation

Reading.

• Arora-Barak § 11.1-11.3

Last time: IP = PSPACE

1 The PCP Theorem

In a traditional NP proof, the verifier generally needs to read the entire certificate to be convinced of the
statement x ∈ L. For example, to verify that φ ∈ SAT, one generally needs to check all of the bits of an
alleged satisfying assignment. When can a (probabilistic) verifier get away with only spot-checking a few
random bits of a certificate?

Theorem 1 (PCP Theorem (Informal)). Every language in NP has a probabilistic verifier that reads only
O(1) bits of its certificate, and is convinced with high probability.

Let us introduce some definitions to make this statement precise. We’ll model a certificate π as an
oracle, which can be nonadaptively queried by writing a sequence of indices i1, . . . , iq to the oracle tape,
and receiving the bit values π[i1], . . . , π[iq] as answers.

Definition 2. For functions r, q : N → N, we say a language L ∈ PCP(r(n), q(n)) if there exists a
probabilistic poly-time oracle TM V with the following properties:

Completeness: x ∈ L =⇒ ∃πPr[V π(x) = 1] = 1

Soundness: x /∈ L =⇒ ∀πPr[V π(x) = 1] ≤ 1/2

Efficiency: V uses O(r(|x|)) random coin tosses and makes O(q(|x|)) non-adaptive queries to π.

Comments on the Definition:

• We can assume |π| ≤ 2O(r(n)) · q(n), since the verifier can only access this many distinct bits of the
certificate.

• As usual, we can amplify soundness to 2−c by repeating verification c times with fresh randomness.

• When q is small (constant), the restriction to non-adaptive queries doesn’t make much of a difference,
since q adaptive queries can be simulated by 2q nonadaptive queries. Most positive results about PCP
systems use nonadaptive verifiers.

Theorem 3 (PCP Theorem). NP = PCP(log n, 1).

1

Why is the PCP Theorem nontrivial? Consider the following attempt to construct a probabilistic verifier
for SAT. Given an instance φ and π representing a satisfying assignment:

1. Sample q random bits of π

2. Reject if the sampled bits violate some clause of φ, and accept otherwise.

This has perfect completeness, but it fails soundness badly. For example, if φ(x1, . . . , xn) = x1 ∧ x1, then
the verifier rejects only if it happens to sample π[1].

1.1 Proof that PCP(log n, 1) ⊆ NP

We’ll actually show the stronger statement that PCP(r, q) ⊆ NTIME(2O(r) · q). To see this, let L ∈
PCP(r, q) with verifier V . Consider the following nondeterministic TM deciding L:

• Nondeterministically guess π of length 2O(r(n))q(n)

• Run V π(x) using all 2O(r(n)) possible choices of its coin tosses, and accept iff all runs accept.

The opposite containment NP ⊆ PCP(log n, 1) is a deep theorem that would take us a few weeks to
cover. (See Chapter 22 of Arora-Barak.) We’ll prove a weaker version on Tuesday that illustrates some of
the main ideas.

1.2 Motivations for PCPs

The PCP Theorem and related results give us:

• New characterizations of NP and NEXP

• Outsourcing computation: A server can convince a client of the outcome of a computation with a
proof where the verifier needs to check only a few random bits.

• Cryptographic applications: PCPs can be combined with cryptographic tools to yield short non-
interactive proofs (or “arguments”) that can be stored on blockchains and such.

• Philosophy of math: Every mathematical theorem with an efficiently checkable proof also has one
that can be probabilistically verified by checking only 3 lines.

• Many NP-hard problems are similarly hard even to approximate.

2 Hardness of Approximation

Let us recall the notion of NP optimization problems (from HW2). Let f(x, y) be a poly-time computable
objective function. Given an input x, the goal is to compute argmaxy f(x, y).

Example 4. MAX3SAT: Given 3CNF φ = C1 ∧ C2 ∧ · · · ∧ Cm with n variables and m clauses, output an
assignment y that satisfies as many clauses as possible, i.e.,

argmaxy∈{0,1}n

m∑
i=1

Ci(y) =: val(φ).

2

Example 5. MAXINDSET: Given a graph G, output a largest independent set.

Example 6. MAXqCSP: Generalizes MAX3SAT, but each “clause” Ci can instead be an arbitrary Boolean
function on q input variables.

The decision versions of all of these problems are NP-complete, so P ̸= NP implies no poly-time
algorithms for (exactly) solving any of these problems.

2.1 Approximation Algorithms

Definition 7. A ρ-approximation algorithm for a maximization problem outputs ŷ such that

f(x, ŷ) ≥ ρ · val(x) := ρ ·max
y

f(x, y).

Example 8. MAX3SAT has an efficient (7/8)-approximation.
Randomized algorithm: A uniformly random assignment y satisfies:

Ey

[
m∑
i=1

Ci(y)

]
=

m∑
i=1

Pr[Ci(y) = 1] = m · 7
8
≥ 7

8
· val(φ).

This algorithm can be efficiently derandomized using the “method of conditional expectations.”

Using advanced PCP technology, Håstad showed this is optimal:

Theorem 9. For every ε > 0, if there is a poly-time (7/8+ε)-approximation to MAX3SAT, then P = NP.

2.2 PCPs vs. Hardness of Approximation

The “standard” PCP theorem we stated has a completely equivalent interpretation in terms of hardness of
approximation. To state this equivalence, let us define a decisional (promise) version of the MAXqCSP
problem.

Recall that a qCSP instance φ is a collection of functions C1, . . . , Cm (called constraints) such that each
Ci depends on at most q variables. The value of of the instance is the maximum number of constraints that
can be simultaneously satisfied:

val(φ) = max
y∈{0,1}n

m∑
i=1

Ci(y).

Definition 10. For q ∈ N and ρ ∈ (0, 1], define the promise problem GapρMAXqCSP by

(GapρMAXqCSP)Y = {φ | val(φ) = m}
(GapρMAXqCSP)N = {φ | val(φ) ≤ ρm}.

Theorem 11. NP = PCP(log n, 1) ⇐⇒ There exist constants ρ, q such that GapρMAXqCSP is NP-
hard.

3

Proof. For the “only if” direction, suppose a language L ∈ NP has a PCP verifier V making q queries
using c log n coin tosses. We’ll reduce L to Gap1/2MAXqCSP as follows. Given an input x, construct a
qCSP instance φ with the following correspondence:

Bits of the proof π 7→ input variables to φ
Sequences of random coin tosses r ∈ {0, 1}c logn 7→ indices of constraints in φ
Number of possible random strings m = 2c logn = nc 7→ number of constraints.
We set φ = {Cr}r∈{0,1}c logn where

Cr(π) = V π(x; r).

That is, constraint Cr is satisfied iff the verifier accepts the proof π using randomness is r.
This is a qCSP because, for every r, the verifier reads at most q bits of the proof π. So each Cr can only

depend on at most q bits of π.
Moreover, the reduction runs in polynomial time because each execution of V does, and because there

are at most m = nc constraints that need to be generated.
Finally, to prove correctness, we check:

x ∈ L =⇒ ∃π Pr
r←{0,1}c logn

[V π(x; r) = 1] = 1

=⇒ ∃π
∑

r∈{0,1}c logn

Cr(π) = m

=⇒ ∃π val(φ) = m =⇒ φ ∈ (Gap1/2MAXqCSP)Y .

x /∈ L =⇒ ∀π Pr
r←{0,1}c logn

[V π(x; r) = 1] ≤ 1/2

=⇒ ∀π val(φ) ≤ m

2
=⇒ φ ∈ (GapρMAXqCSP)N .

Now for the “if” direction, suppose GapρMAXqCSP is NP-hard. Let L ∈ NP, with poly-time com-
putable f computing the reduction. We give a PCP system for L as follows.

On input x, the verifier computes f(x) to obtain a qCSP instance φ = {Ci}mi=1. It expects the proof π
to be a satisfying assignment to φ. To verify the proof, V π(x) samples a random constraint i, and accepts
iff Ci(π) = 1. This all takes polynomial time. We check:
Completeness: If x ∈ L, then val(φ) = 1, so there exists π such that Pr[V π(x) = 1] = 1.
Soundness: If x /∈ L, then val(φ) ≤ ρ, so for every π, we have Pr[V π(x) = 1] ≤ ρ. (This can be amplified
to the constant 1/2 by repetition.)
Queries: The verifier makes q = O(1) queries to π.
Randomness. The verifier samples a single random constraint, which takes O(logm) = O(log n) bits.

4

	The PCP Theorem
	Proof that PCP(n, 1) NP
	Motivations for PCPs

	Hardness of Approximation
	Approximation Algorithms
	PCPs vs. Hardness of Approximation

