CAS CS 535: Complexity Theory
Lecturer: Mark Bun Fall 2023
Lecture Notes 24:

More Hardness of Approximation, Proof of PCP Mini

Reading.
* Arora-Barak § 11.4-11.5

Last time: PCP Theorem, Hardness of Approximation

1 Hardness of Approximation

Theorem 1 (PCP Theorem). Every language L in NP has a PCP verifier using O(logn) random coin
tosses and making ¢ = O(1) queries to its certificate.

Last time we showed that the PCP Theorem is equivalent to the following statement: There exists a
constant g such that Gap, / MAXqCSP is NP-hard.

Using the idea behind the standard NP-hardness reduction from SAT to 3SAT, this in turn is equivalent
to the statement: There exists a constant p < 1 such that Gap,MAX3SAT is NP-hard.

Just as how we used the N P-hardness of the exact version of 3SAT to prove a host of other NP-hardness
results, so too can we use the hardness of the approximation version. For instance:

Theorem 2. For every constant p € (0, 1), the problem MAX — INDSET is NP-hard to approximate within
a factor of p.

The quantifier “for every” p here is interesting, because the approximation problem becomes easier as
p— 0.

Proof. First, we’ll use the standard NP-hardness reduction from 3SAT to INDSET to show this is true for
some p < 1. Then we’ll “amplify” the approximation gap to show that the statement is true for every p.

Part1: Letp < 1besuchthat Gap,MAX3SAT is NP-hard. Let f be the standard NP-hardness reduction
from 3SAT to INDSET. This reduction has the property that, for every 3CNF formula , we have

val(¢) > k <= f() has an independent set of size > k.
Thus, if ¢ is a formula with m clauses, we have

val(p) =m = IS(f(¢)) =m
val(p) < pm = IS(f(p)) < pm

where IS(G) is the size of the largest independent set in G. So it is NP-hard to approximate IS to within a
factor of p.

Part 2: Now we reduce the problem of p-approximating the largest independent set in a graph G to that
of p*-approximating the largest independent set in a new graph G*. The new graph G* is constructed (in
poly-time) from G as follows:

Vertices of G*: All subsets of k vertices of G

Edges of G*: S ~ T iff S U T is not independent in G.

®

Let 7" be a maximum-size independent set in G. Then one can check that the largest independent set in
GF is:
{ScT]||S| =k}

Thus we have 1S(Q
IS(G*) = (EC)> ~ (IS(G))*.

Thus, we have
IS(G) =m = IS(G*) =~ m*
IS(G) < pm = IS(G*) < (pm)* = p*m*.

We can make the gap p* smaller than any constant by taking % to be a sufficiently large constant. O

2 PCP Mini

“The” PCP Theorem says NP = PCP(r(n) = logn,q(n) = 1), where r(n) represents the number of
verifier coin tosses, and ¢(n) is the number of queries. Recall that WLOG, we can always take the length of
the proof to be 27 . (n) = poly(n) in this statement.

Today, we’ll prove the following “mini” (or maybe “mega” depending on how you look at it) version of
the PCP Theorem:

Theorem 3 (PCP Mini). NP C PCP(poly(n),1).

That is, every language in NP has a PCP system with a exponentially long proofs.
It suffices to design such a PCP system for the NP-complete problem

QUAD = {satisfiable systems of quadratic equations over Zs}.
Example 4. An instance of QUAD looks like the following:

T1To+x304 =1
Q = { T213
r1x9 + x904 = 0.

This system is satisfiable, say, with satisfying assignment (x1, z2, x3,24) = (1,1,0,1).

To see this is NP-complete, we can reduce from CKT — SAT as follows: Label each gate with a distinct
variable, and enforce consistency with the gates feeding into it using a quadratic equation. For instance, if a
gate requires z = x V y, add the constraint (1 — z)(1 —y) + 2z = 1.

2.1 PCP for QUAD

Random subset sum principle: If u # v € Z7, then
1
p = =_.
JPr Ll 2) = (o,2)] = 5

That is, if » and v are distinct bit vectors, then the probability that the XOR of the same random subset of
bits from u and from v agree is 1/2.

Example 5. Let v = 1011, v = 1001. Then (u,x) = (v,x) if and only if 23 = 0, which happens with
probability 1/2.

We’ll use this principle in a few places in our PCP construction, but the main use is as follows: If u fails
to solve a system (), then it fails to solve a random linear combination of the constraints with probability
1/2.

The honestly generated proof 7 for an instance) of QUAD will consist of the values of all on’ quadratic
functions of a satisfying assignment to (). That is,

™ = E Aijuiuj
i?j

= <<A, uuT)>
—: WH(uu ")

Aezy*"

Aezy*"

which is called the “Walsh-Hadamard” encoding of the n x n matrix uu ' .

Here’s the gameplan for probabilistically verifying an alleged proof 7*:
N

1. Linearity Test: Check (in a manner we’ll describe later) that 7 is “close” to w := WH(vwv ') for some

v € L.

2. Random Subset Sum: Take a random linear combination of the constraints in () to obtain a single
quadratic equation Ax = b.

3. Local Decoding: Compute 7(A) using a constant number of probes to 7*, and check that it equals b.

2.2 Linearity Testing

Definition 6. For a vector v € Z4', the Walsh-Hadamard encoding WH(v) is the truth table of the linear
function f : Z5" — Zg defined by f(x) = (x, v). (This is just a 2™-bit vector.)

In the linearity testing problem, we are given query access to a function f 1 2§ — Zg, and our goal is
to test whether it is “close” to some linear function f(z) = (z,v).

Note that a function f is linear if and only if f(m +y) = flz)+ f(y) for all z,y € Z5'. The BLR
(Blum-Luby-Rubinfeld) Test checks the global property of linearity of a function f by just checking whether
this identity holds for a random pair z, y:

BLR Test: Pick random z, y < ZJ and check that f(z +y) = f(z) + f(y).
This test has the following guarantees:

Definition 7. Two functions f, g : Z5* — Z are d-close if

Pr i) =g@)] =14

Completeness: Iff’is linear, then Pr[f(x +y) = f(:p) + fly)] =1.

Soundness: If f is not d-close to any linear function, then

Pr(f(z +y) = f(z) + f(y)] <1-9(5)
Note that this test requires evaluating f at only 3 random locations. Moreover, soundness can be amplified
through repetition, at the expense of increasing the number of queries to f.
2.3 Local Decoding

Suppose we know that f is d-close to some linear function f. (Note that if 6 < 1/4, then this function f is
unique.)

Claim 8. There is an (efficient) algorithm that computes f(x) (with high probability) using O(1) probes to
1.

Decoding Procedure: Pick a random y <— Z3" and compute f (r+y)— f ().

Analysis: Observe that for every x, the point x + y (for uniformly random y) is itself uniformly random.
Therefore, by a union bound,

Pr(f(z+y) — f(y) # f(2)] < Prlf(z +y) # fl@+y)]+Prlf(y) # f(y)]
< 25.

2.4 Fixing a Lie

The linearity test we described is able to determine (whp) whether 7* is close to WH(M) for some M €
Z5*™. But how do we ensure that this M takes the form uu ' for some u € Z3?

Solution: We’ll enable the verifier to check this by also including an encoding g of u itself as part of the
proof.

Test: Given f and g (alleged to encode uu’ and u, respectively), pick r, s < Z% uniformly and test if

frs™) = g(r)g(s).
Completeness: If f = WH(uu') and g = WH(u), then
Flrs)y = (rs")gusu;
i,J
= (rqui)(s;u;)
i3
= <T‘, ’LL> ' <87 ’LL>
=9(r)g(s).
Soundness: If f = WH(M) and g = WH(u) for some M # uu', then

Pr(f(rs") = g(r)g(s)] = Pr[(M,rs") = (u,7) - (u, s)]
r[(s, Mr) = <S,uuTr>]

1
+ 3 Pr[Mr # uu ' 7]

I
INRICE T

	Hardness of Approximation
	PCP Mini
	PCP for QUAD
	Linearity Testing
	Local Decoding
	Fixing a Lie

