1 Hardness of Approximation

Theorem 1 (PCP Theorem). Every language L in NP has a PCP verifier using $O(\log n)$ random coin tosses and making $q = O(1)$ queries to its certificate.

Last time we showed that the PCP Theorem is equivalent to the following statement: There exists a constant q such that $\text{Gap}_{1/2} \text{MAX}_q \text{CSP}$ is NP-hard.

Using the idea behind the standard NP-hardness reduction from SAT to 3SAT, this in turn is equivalent to the statement: There exists a constant $\rho < 1$ such that $\text{Gap}_{\rho} \text{MAX}_3 \text{SAT}$ is NP-hard.

Just as how we used the NP-hardness of the exact version of 3SAT to prove a host of other NP-hardness results, so too can we use the hardness of the approximation version. For instance:

Theorem 2. For every constant $\rho \in (0, 1)$, the problem $\text{MAX} - \text{INDSET}$ is NP-hard to approximate within a factor of ρ.

The quantifier “for every” ρ here is interesting, because the approximation problem becomes easier as $\rho \to 0$.

Proof. First, we’ll use the standard NP-hardness reduction from 3SAT to INDSET to show this is true for some $\rho < 1$. Then we’ll “amplify” the approximation gap to show that the statement is true for every ρ.

Part 1: Let $\rho < 1$ be such that $\text{Gap}_{\rho} \text{MAX}_3 \text{SAT}$ is NP-hard. Let f be the standard NP-hardness reduction from 3SAT to INDSET. This reduction has the property that, for every 3CNF formula φ, we have

$$\text{val}(\varphi) \geq k \iff f(\varphi) \text{ has an independent set of size } \geq k.$$

Thus, if φ is a formula with m clauses, we have

$$\text{val}(\varphi) = m \implies \text{IS}(f(\varphi)) = m$$
$$\text{val}(\varphi) < \rho m \implies \text{IS}(f(\varphi)) < \rho m$$

where $\text{IS}(G)$ is the size of the largest independent set in G. So it is NP-hard to approximate IS to within a factor of ρ.

1
Part 2: Now we reduce the problem of ρ-approximating the largest independent set in a graph G to that of ρ^k-approximating the largest independent set in a new graph G^k. The new graph G^k is constructed (in poly-time) from G as follows:

Vertices of G^k: All subsets of k vertices of G

Edges of G^k: $S \sim T$ iff $S \cup T$ is not independent in G.

\[
G = \begin{array}{c}
1 & 2 \\
3 & 4
\end{array}
\quad
G^2 = \begin{array}{c}
1, 2 & 1, 3 \\
2, 3 & 2, 4 \\
1, 4 & 3, 4
\end{array}
\]

Let T be a maximum-size independent set in G. Then one can check that the largest independent set in G^k is:

$$\{S \subset T \mid |S| = k\}.$$

Thus we have

$$\text{IS}(G^k) = \left(\text{IS}(G)\right)^k \approx \left(\text{IS}(G)\right)^k.$$

Thus, we have

$$\text{IS}(G) = m \implies \text{IS}(G^k) \approx m^k$$

$$\text{IS}(G) < \rho m \implies \text{IS}(G^k) \lesssim (\rho m)^k = \rho^k m^k.$$

We can make the gap ρ^k smaller than any constant by taking k to be a sufficiently large constant.

2 PCP Mini

“The” PCP Theorem says $\text{NP} = \text{PCP}(r(n) = \log n, q(n) = 1)$, where $r(n)$ represents the number of verifier coin tosses, and $q(n)$ is the number of queries. Recall that WLOG, we can always take the length of the proof to be $2^{q(n)} \cdot r(n) = \text{poly}(n)$ in this statement.

Today, we’ll prove the following “mini” (or maybe “mega” depending on how you look at it) version of the PCP Theorem:

Theorem 3 (PCP Mini). $\text{NP} \subseteq \text{PCP}(\text{poly}(n), 1)$.

That is, every language in \(\text{NP} \) has a PCP system with a exponentially long proofs. It suffices to design such a PCP system for the \(\text{NP} \)-complete problem

\[\text{QUAD} = \{ \text{satisfiable systems of quadratic equations over } \mathbb{Z}_2 \} \]

Example 4. An instance of QUAD looks like the following:

\[
Q = \begin{cases}
 x_1 x_2 + x_3 x_4 & = 1 \\
 x_2 x_3 & = 0 \\
 x_1 x_2 + x_2 x_4 & = 0.
\end{cases}
\]

This system is satisfiable, say, with satisfying assignment \((x_1, x_2, x_3, x_4) = (1, 1, 0, 1)\).

To see this is \(\text{NP} \)-complete, we can reduce from CKT−SAT as follows: Label each gate with a distinct variable, and enforce consistency with the gates feeding into it using a quadratic equation. For instance, if a gate requires \(z = x \vee y \), add the constraint \((1 - x)(1 - y) + z = 1\).

2.1 PCP for QUAD

Random subset sum principle: If \(u \neq v \in \mathbb{Z}_2^n \), then

\[
\Pr_{x \sim \mathbb{Z}_2^n}[\langle u, x \rangle = \langle v, x \rangle] = \frac{1}{2}.
\]

That is, if \(u \) and \(v \) are distinct bit vectors, then the probability that the XOR of the same random subset of bits from \(u \) and from \(v \) agree is 1/2.

Example 5. Let \(u = 1011 \), \(v = 1001 \). Then \(\langle u, x \rangle = \langle v, x \rangle \) if and only if \(x_3 = 0 \), which happens with probability 1/2.

We’ll use this principle in a few places in our PCP construction, but the main use is as follows: If \(u \) fails to solve a system \(Q \), then it fails to solve a random linear combination of the constraints with probability 1/2.

The honestly generated proof \(\pi \) for an instance \(Q \) of QUAD will consist of the values of all \(2^n \) quadratic functions of a satisfying assignment to \(Q \). That is,

\[
\pi = \left(\sum_{i,j} A_{ij} u_i u_j \right)_{A \in \mathbb{Z}_2^n} = \left(\langle A, uu^\top \rangle \right)_{A \in \mathbb{Z}_2^n} =: \text{WH}(uu^\top)
\]

which is called the “Walsh-Hadamard” encoding of the \(n \times n \) matrix \(uu^\top \).

Here’s the gameplan for probabilistically verifying an alleged proof \(\pi^* \):

1. **Linearity Test:** Check (in a manner we’ll describe later) that \(\pi^* \) is “close” to \(\pi := \text{WH}(vv^\top) \) for some \(v \in \mathbb{Z}_2^n \).
2. **Random Subset Sum:** Take a random linear combination of the constraints in \(Q \) to obtain a single quadratic equation \(Ax = b \).
3. **Local Decoding:** Compute \(\pi(A) \) using a constant number of probes to \(\pi^* \), and check that it equals \(b \).
2.2 Linearity Testing

Definition 6. For a vector \(v \in \mathbb{Z}_2^m \), the Walsh-Hadamard encoding \(WH(v) \) is the truth table of the linear function \(f : \mathbb{Z}_2^m \to \mathbb{Z}_2 \) defined by \(f(x) = \langle x, v \rangle \). (This is just a \(2^m \)-bit vector.)

In the linearity testing problem, we are given query access to a function \(\hat{f} : \mathbb{Z}_2^m \to \mathbb{Z}_2 \), and our goal is to test whether it is “close” to some linear function \(f(x) = \langle x, v \rangle \).

Note that a function \(\hat{f} \) is linear if and only if \(\hat{f}(x + y) = \hat{f}(x) + \hat{f}(y) \) for all \(x, y \in \mathbb{Z}_2^m \). The BLR (Blum-Luby-Rubinfeld) Test checks the global property of linearity of a function \(\hat{f} \) by just checking whether this identity holds for a random pair \(x, y \):

BLR Test: Pick random \(x, y \leftarrow \mathbb{Z}_2^m \) and check that \(\hat{f}(x + y) = \hat{f}(x) + \hat{f}(y) \).

This test has the following guarantees:

Definition 7. Two functions \(f, g : \mathbb{Z}_2^m \to \mathbb{Z}_2 \) are \(\delta \)-close if \(\Pr_{x \in \mathbb{Z}_2^m} [f(x) = g(x)] \geq 1 - \delta \).

Completeness: If \(\hat{f} \) is linear, then \(\Pr[\hat{f}(x + y) = \hat{f}(x) + \hat{f}(y)] = 1 \).

Soundness: If \(\hat{f} \) is not \(\delta \)-close to any linear function, then \(\Pr[\hat{f}(x + y) = \hat{f}(x) + \hat{f}(y)] \leq 1 - \Omega(\delta) \).

Note that this test requires evaluating \(\hat{f} \) at only 3 random locations. Moreover, soundness can be amplified through repetition, at the expense of increasing the number of queries to \(\hat{f} \).

2.3 Local Decoding

Suppose we know that \(\hat{f} \) is \(\delta \)-close to some linear function \(f \). (Note that if \(\delta < 1/4 \), then this function \(f \) is unique.)

Claim 8. There is an (efficient) algorithm that computes \(f(x) \) (with high probability) using \(O(1) \) probes to \(\hat{f} \).

Decoding Procedure: Pick a random \(y \leftarrow \mathbb{Z}_2^m \) and compute \(\hat{f}(x + y) - \hat{f}(x) \).

Analysis: Observe that for every \(x \), the point \(x + y \) (for uniformly random \(y \)) is itself uniformly random. Therefore, by a union bound,

\[
\Pr[\hat{f}(x + y) - \hat{f}(y) \neq f(x)] \leq \Pr[\hat{f}(x + y) \neq f(x + y)] + \Pr[\hat{f}(y) \neq f(y)] \leq 2\delta.
\]

4
2.4 Fixing a Lie

The linearity test we described is able to determine (whp) whether π^* is close to $\text{WH}(M)$ for some $M \in \mathbb{Z}_2^{n \times n}$. But how do we ensure that this M takes the form uu^\top for some $u \in \mathbb{Z}_2^n$?

Solution: We’ll enable the verifier to check this by also including an encoding g of u itself as part of the proof.

Test: Given f and g (alleged to encode uu^\top and u, respectively), pick $r, s \leftarrow \mathbb{Z}_2^n$ uniformly and test if $f(rs^\top) = g(r)g(s)$.

Completeness: If $f = \text{WH}(uu^\top)$ and $g = \text{WH}(u)$, then

$$f(rs^\top) = \sum_{i,j} (rs^\top)_{ij}u_iu_j$$

$$= \sum_{i,j} (r_iu_i)(s_ju_j)$$

$$= \langle r, u \rangle \cdot \langle s, u \rangle$$

$$= g(r)g(s).$$

Soundness: If $f = \text{WH}(M)$ and $g = \text{WH}(u)$ for some $M \neq uu^\top$, then

$$\Pr[f(rs^\top) = g(r)g(s)] = \Pr[\langle M, rs^\top \rangle = \langle u, r \rangle \cdot \langle u, s \rangle]$$

$$= \Pr[\langle s, Mr \rangle = \langle s, uu^\top r \rangle]$$

$$= \frac{1}{2} + \frac{1}{2} \Pr[Mr \neq uu^\top r]$$

$$= \frac{3}{4}.$$