Lecture Notes 24:
 More Hardness of Approximation, Proof of PCP Mini

Reading.

- Arora-Barak § 11.4-11.5

Last time: PCP Theorem, Hardness of Approximation

1 Hardness of Approximation

Theorem 1 (PCP Theorem). Every language L in NP has a PCP verifier using $O(\log n)$ random coin tosses and making $q=O(1)$ queries to its certificate.

Last time we showed that the PCP Theorem is equivalent to the following statement: There exists a constant q such that $\operatorname{Gap}_{1 / 2} \mathrm{MAX} q \mathrm{CSP}$ is NP-hard.

Using the idea behind the standard NP-hardness reduction from SAT to 3SAT, this in turn is equivalent to the statement: There exists a constant $\rho<1$ such that Gap ${ }_{\rho}$ MAX3SAT is NP-hard.

Just as how we used the NP-hardness of the exact version of 3SAT to prove a host of other NP-hardness results, so too can we use the hardness of the approximation version. For instance:

Theorem 2. For every constant $\rho \in(0,1)$, the problem MAX - INDSET is NP-hard to approximate within a factor of ρ.

The quantifier "for every" ρ here is interesting, because the approximation problem becomes easier as $\rho \rightarrow 0$.

Proof. First, we'll use the standard NP-hardness reduction from 3SAT to INDSET to show this is true for some $\rho<1$. Then we'll "amplify" the approximation gap to show that the statement is true for every ρ.

Part 1: Let $\rho<1$ be such that Gap ${ }_{\rho}$ MAX3SAT is NP-hard. Let f be the standard NP-hardness reduction from 3SAT to INDSET. This reduction has the property that, for every 3CNF formula φ, we have

$$
\operatorname{val}(\varphi) \geq k \Longleftrightarrow f(\varphi) \text { has an independent set of size } \geq k
$$

Thus, if φ is a formula with m clauses, we have

$$
\begin{aligned}
\operatorname{val}(\varphi)=m & \Longrightarrow \operatorname{IS}(f(\varphi))=m \\
\operatorname{val}(\varphi)<\rho m & \Longrightarrow \operatorname{IS}(f(\varphi))<\rho m
\end{aligned}
$$

where $\operatorname{IS}(G)$ is the size of the largest independent set in G. So it is NP-hard to approximate IS to within a factor of ρ.

Part 2: Now we reduce the problem of ρ-approximating the largest independent set in a graph G to that of ρ^{k}-approximating the largest independent set in a new graph G^{k}. The new graph G^{k} is constructed (in poly-time) from G as follows:
Vertices of G^{k} : All subsets of k vertices of G
Edges of $G^{k}: S \sim T$ iff $S \cup T$ is not independent in G.

Let T be a maximum-size independent set in G. Then one can check that the largest independent set in G^{k} is:

$$
\{S \subset T||S|=k\} .
$$

Thus we have

$$
\operatorname{IS}\left(G^{k}\right)=\binom{\operatorname{IS}(G)}{k} \approx(\operatorname{IS}(G))^{k}
$$

Thus, we have

$$
\begin{aligned}
\operatorname{IS}(G)=m & \Longrightarrow \operatorname{IS}\left(G^{k}\right) \approx m^{k} \\
\operatorname{IS}(G)<\rho m & \Longrightarrow \operatorname{IS}\left(G^{k}\right) \lesssim(\rho m)^{k}=\rho^{k} m^{k}
\end{aligned}
$$

We can make the gap ρ^{k} smaller than any constant by taking k to be a sufficiently large constant.

2 PCP Mini

"The" PCP Theorem says NP $=\mathbf{P C P}(r(n)=\log n, q(n)=1)$, where $r(n)$ represents the number of verifier coin tosses, and $q(n)$ is the number of queries. Recall that WLOG, we can always take the length of the proof to be $2^{q(n)} \cdot r(n)=\operatorname{poly}(n)$ in this statement.

Today, we'll prove the following "mini" (or maybe "mega" depending on how you look at it) version of the PCP Theorem:

Theorem 3 (PCP Mini). NP $\subseteq \mathbf{P C P}(\operatorname{poly}(n), 1)$.

That is, every language in NP has a PCP system with a exponentially long proofs.
It suffices to design such a PCP system for the NP-complete problem

$$
\text { QUAD }=\left\{\text { satisfiable systems of quadratic equations over } \mathbb{Z}_{2}\right\}
$$

Example 4. An instance of QUAD looks like the following:

$$
Q= \begin{cases}x_{1} x_{2}+x_{3} x_{4} & =1 \\ x_{2} x_{3} & =0 \\ x_{1} x_{2}+x_{2} x_{4} & =0\end{cases}
$$

This system is satisfiable, say, with satisfying assignment $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,1,0,1)$.
To see this is NP-complete, we can reduce from CKT - SAT as follows: Label each gate with a distinct variable, and enforce consistency with the gates feeding into it using a quadratic equation. For instance, if a gate requires $z=x \vee y$, add the constraint $(1-x)(1-y)+z=1$.

2.1 PCP for QUAD

Random subset sum principle: If $u \neq v \in \mathbb{Z}_{2}^{n}$, then

$$
\operatorname{Pr}_{x \sim \mathbb{Z}_{2}^{n}}[\langle u, x\rangle=\langle v, x\rangle]=\frac{1}{2}
$$

That is, if u and v are distinct bit vectors, then the probability that the XOR of the same random subset of bits from u and from v agree is $1 / 2$.

Example 5. Let $u=1011, v=1001$. Then $\langle u, x\rangle=\langle v, x\rangle$ if and only if $x_{3}=0$, which happens with probability $1 / 2$.

We'll use this principle in a few places in our PCP construction, but the main use is as follows: If u fails to solve a system Q, then it fails to solve a random linear combination of the constraints with probability $1 / 2$.

The honestly generated proof π for an instance Q of QUAD will consist of the values of all $2^{n^{2}}$ quadratic functions of a satisfying assignment to Q. That is,

$$
\begin{aligned}
\pi & =\left(\sum_{i, j} A_{i j} u_{i} u_{j}\right)_{A \in \mathbb{Z}_{2}^{n \times n}} \\
& =\left(\left\langle A, u u^{\top}\right\rangle\right)_{A \in \mathbb{Z}_{2}^{n \times n}} \\
& =: \mathrm{WH}\left(u u^{\top}\right)
\end{aligned}
$$

which is called the "Walsh-Hadamard" encoding of the $n \times n$ matrix $u u^{\top}$.
Here's the gameplan for probabilistically verifying an alleged proof π^{*} :

1. Linearity Test: Check (in a manner we'll describe later) that π^{*} is "close" to $\pi:=\mathrm{WH}\left(v v^{\top}\right)$ for some $v \in \mathbb{Z}_{2}^{n}$.
2. Random Subset Sum: Take a random linear combination of the constraints in Q to obtain a single quadratic equation $A x=b$.
3. Local Decoding: Compute $\pi(A)$ using a constant number of probes to π^{*}, and check that it equals b.

2.2 Linearity Testing

Definition 6. For a vector $v \in \mathbb{Z}_{2}^{m}$, the Walsh-Hadamard encoding $\mathrm{WH}(v)$ is the truth table of the linear function $f: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}$ defined by $f(x)=\langle x, v\rangle$. (This is just a 2^{m}-bit vector.)

In the linearity testing problem, we are given query access to a function $\hat{f}: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}$, and our goal is to test whether it is "close" to some linear function $f(x)=\langle x, v\rangle$.

Note that a function \hat{f} is linear if and only if $\hat{f}(x+y)=\hat{f}(x)+\hat{f}(y)$ for all $x, y \in \mathbb{Z}_{2}^{m}$. The BLR (Blum-Luby-Rubinfeld) Test checks the global property of linearity of a function \hat{f} by just checking whether this identity holds for a random pair x, y :

BLR Test: Pick random $x, y \leftarrow \mathbb{Z}_{2}^{m}$ and check that $\hat{f}(x+y)=\hat{f}(x)+\hat{f}(y)$.
This test has the following guarantees:
Definition 7. Two functions $f, g: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}$ are δ-close if

$$
\operatorname{Pr}_{x \in \mathbb{Z}_{2}^{n}}[f(x)=g(x)] \geq 1-\delta,
$$

Completeness: If \hat{f} is linear, then $\operatorname{Pr}[\hat{f}(x+y)=\hat{f}(x)+\hat{f}(y)]=1$.
Soundness: If \hat{f} is not δ-close to any linear function, then

$$
\operatorname{Pr}[\hat{f}(x+y)=\hat{f}(x)+\hat{f}(y)] \leq 1-\Omega(\delta)
$$

Note that this test requires evaluating \hat{f} at only 3 random locations. Moreover, soundness can be amplified through repetition, at the expense of increasing the number of queries to \hat{f}.

2.3 Local Decoding

Suppose we know that \hat{f} is δ-close to some linear function f. (Note that if $\delta<1 / 4$, then this function f is unique.)

Claim 8. There is an (efficient) algorithm that computes $f(x)$ (with high probability) using $O(1)$ probes to \hat{f}.

Decoding Procedure: Pick a random $y \leftarrow \mathbb{Z}_{2}^{m}$ and compute $\hat{f}(x+y)-\hat{f}(x)$.
Analysis: Observe that for every x, the point $x+y$ (for uniformly random y) is itself uniformly random. Therefore, by a union bound,

$$
\begin{aligned}
\operatorname{Pr}[\hat{f}(x+y)-\hat{f}(y) \neq f(x)] & \leq \operatorname{Pr}[\hat{f}(x+y) \neq f(x+y)]+\operatorname{Pr}[\hat{f}(y) \neq f(y)] \\
& \leq 2 \delta .
\end{aligned}
$$

2.4 Fixing a Lie

The linearity test we described is able to determine (whp) whether π^{*} is close to $\mathrm{WH}(M)$ for some $M \in$ $\mathbb{Z}_{2}^{n \times n}$. But how do we ensure that this M takes the form $u u^{\top}$ for some $u \in \mathbb{Z}_{2}^{n}$?

Solution: We'll enable the verifier to check this by also including an encoding g of u itself as part of the proof.

Test: Given f and g (alleged to encode $u u^{T}$ and u, respectively), pick $r, s \leftarrow \mathbb{Z}_{2}^{n}$ uniformly and test if $f\left(r s^{T}\right)=g(r) g(s)$.

Completeness: If $f=\mathrm{WH}\left(u u^{\top}\right)$ and $g=\mathrm{WH}(u)$, then

$$
\begin{aligned}
f\left(r s^{\top}\right) & =\sum_{i, j}\left(r s^{\top}\right)_{i j} u_{i} u_{j} \\
& =\sum_{i, j}\left(r_{i} u_{i}\right)\left(s_{j} u_{j}\right) \\
& =\langle r, u\rangle \cdot\langle s, u\rangle \\
& =g(r) g(s) .
\end{aligned}
$$

Soundness: If $f=\mathrm{WH}(M)$ and $g=\mathrm{WH}(u)$ for some $M \neq u u^{\top}$, then

$$
\begin{aligned}
\operatorname{Pr}\left[f\left(r s^{\top}\right)=g(r) g(s)\right] & =\operatorname{Pr}\left[\left\langle M, r s^{\top}\right\rangle=\langle u, r\rangle \cdot\langle u, s\rangle\right] \\
& =\operatorname{Pr}\left[\langle s, M r\rangle=\left\langle s, u u^{\top} r\right\rangle\right] \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Pr}\left[M r \neq u u^{\top} r\right] \\
& =\frac{3}{4} .
\end{aligned}
$$

