
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 24:

More Hardness of Approximation, Proof of PCP Mini

Reading.

• Arora-Barak § 11.4-11.5

Last time: PCP Theorem, Hardness of Approximation

1 Hardness of Approximation

Theorem 1 (PCP Theorem). Every language L in NP has a PCP verifier using O(log n) random coin
tosses and making q = O(1) queries to its certificate.

Last time we showed that the PCP Theorem is equivalent to the following statement: There exists a
constant q such that Gap1/2MAXqCSP is NP-hard.

Using the idea behind the standard NP-hardness reduction from SAT to 3SAT, this in turn is equivalent
to the statement: There exists a constant ρ < 1 such that GapρMAX3SAT is NP-hard.

Just as how we used the NP-hardness of the exact version of 3SAT to prove a host of other NP-hardness
results, so too can we use the hardness of the approximation version. For instance:

Theorem 2. For every constant ρ ∈ (0, 1), the problem MAX− INDSET is NP-hard to approximate within
a factor of ρ.

The quantifier “for every” ρ here is interesting, because the approximation problem becomes easier as
ρ→ 0.

Proof. First, we’ll use the standard NP-hardness reduction from 3SAT to INDSET to show this is true for
some ρ < 1. Then we’ll “amplify” the approximation gap to show that the statement is true for every ρ.

Part 1: Let ρ < 1 be such that GapρMAX3SAT is NP-hard. Let f be the standard NP-hardness reduction
from 3SAT to INDSET. This reduction has the property that, for every 3CNF formula φ, we have

val(φ) ≥ k ⇐⇒ f(φ) has an independent set of size ≥ k.

Thus, if φ is a formula with m clauses, we have

val(φ) = m =⇒ IS(f(φ)) = m

val(φ) < ρm =⇒ IS(f(φ)) < ρm

where IS(G) is the size of the largest independent set in G. So it is NP-hard to approximate IS to within a
factor of ρ.

1



Part 2: Now we reduce the problem of ρ-approximating the largest independent set in a graph G to that
of ρk-approximating the largest independent set in a new graph Gk. The new graph Gk is constructed (in
poly-time) from G as follows:
Vertices of Gk: All subsets of k vertices of G
Edges of Gk: S ∼ T iff S ∪ T is not independent in G.

𝐺𝐺 =

1 2

3 4

𝐺𝐺2 =

1, 2 1, 3 1, 4

2, 3 2, 4 3, 4

Let T be a maximum-size independent set in G. Then one can check that the largest independent set in
Gk is:

{S ⊂ T | |S| = k}.

Thus we have

IS(Gk) =

(
IS(G)

k

)
≈ (IS(G))k.

Thus, we have

IS(G) = m =⇒ IS(Gk) ≈ mk

IS(G) < ρm =⇒ IS(Gk) ≲ (ρm)k = ρkmk.

We can make the gap ρk smaller than any constant by taking k to be a sufficiently large constant.

2 PCP Mini

“The” PCP Theorem says NP = PCP(r(n) = log n, q(n) = 1), where r(n) represents the number of
verifier coin tosses, and q(n) is the number of queries. Recall that WLOG, we can always take the length of
the proof to be 2q(n) · r(n) = poly(n) in this statement.

Today, we’ll prove the following “mini” (or maybe “mega” depending on how you look at it) version of
the PCP Theorem:

Theorem 3 (PCP Mini). NP ⊆ PCP(poly(n), 1).

2



That is, every language in NP has a PCP system with a exponentially long proofs.
It suffices to design such a PCP system for the NP-complete problem

QUAD = {satisfiable systems of quadratic equations over Z2}.

Example 4. An instance of QUAD looks like the following:

Q =


x1x2 + x3x4 = 1

x2x3 = 0

x1x2 + x2x4 = 0.

This system is satisfiable, say, with satisfying assignment (x1, x2, x3, x4) = (1, 1, 0, 1).

To see this is NP-complete, we can reduce from CKT−SAT as follows: Label each gate with a distinct
variable, and enforce consistency with the gates feeding into it using a quadratic equation. For instance, if a
gate requires z = x ∨ y, add the constraint (1− x)(1− y) + z = 1.

2.1 PCP for QUAD

Random subset sum principle: If u ̸= v ∈ Zn
2 , then

Pr
x∼Zn

2

[⟨u, x⟩ = ⟨v, x⟩] = 1

2
.

That is, if u and v are distinct bit vectors, then the probability that the XOR of the same random subset of
bits from u and from v agree is 1/2.

Example 5. Let u = 1011, v = 1001. Then ⟨u, x⟩ = ⟨v, x⟩ if and only if x3 = 0, which happens with
probability 1/2.

We’ll use this principle in a few places in our PCP construction, but the main use is as follows: If u fails
to solve a system Q, then it fails to solve a random linear combination of the constraints with probability
1/2.

The honestly generated proof π for an instance Q of QUAD will consist of the values of all 2n
2

quadratic
functions of a satisfying assignment to Q. That is,

π =

∑
i,j

Aijuiuj


A∈Zn×n

2

=
(
⟨A, uu⊤⟩

)
A∈Zn×n

2

=: WH(uu⊤)

which is called the “Walsh-Hadamard” encoding of the n× n matrix uu⊤.
Here’s the gameplan for probabilistically verifying an alleged proof π∗:

1. Linearity Test: Check (in a manner we’ll describe later) that π∗ is “close” to π := WH(vv⊤) for some
v ∈ Zn

2 .

2. Random Subset Sum: Take a random linear combination of the constraints in Q to obtain a single
quadratic equation Ax = b.

3. Local Decoding: Compute π(A) using a constant number of probes to π∗, and check that it equals b.

3



2.2 Linearity Testing

Definition 6. For a vector v ∈ Zm
2 , the Walsh-Hadamard encoding WH(v) is the truth table of the linear

function f : Zm
2 → Z2 defined by f(x) = ⟨x, v⟩. (This is just a 2m-bit vector.)

In the linearity testing problem, we are given query access to a function f̂ : Zm
2 → Z2, and our goal is

to test whether it is “close” to some linear function f(x) = ⟨x, v⟩.
Note that a function f̂ is linear if and only if f̂(x + y) = f̂(x) + f̂(y) for all x, y ∈ Zm

2 . The BLR
(Blum-Luby-Rubinfeld) Test checks the global property of linearity of a function f̂ by just checking whether
this identity holds for a random pair x, y:

BLR Test: Pick random x, y ← Zm
2 and check that f̂(x+ y) = f̂(x) + f̂(y).

This test has the following guarantees:

Definition 7. Two functions f, g : Zm
2 → Z2 are δ-close if

Pr
x∈Zn

2

[f(x) = g(x)] ≥ 1− δ,

Completeness: If f̂ is linear, then Pr[f̂(x+ y) = f̂(x) + f̂(y)] = 1.

Soundness: If f̂ is not δ-close to any linear function, then

Pr[f̂(x+ y) = f̂(x) + f̂(y)] ≤ 1− Ω(δ)

Note that this test requires evaluating f̂ at only 3 random locations. Moreover, soundness can be amplified
through repetition, at the expense of increasing the number of queries to f̂ .

2.3 Local Decoding

Suppose we know that f̂ is δ-close to some linear function f . (Note that if δ < 1/4, then this function f is
unique.)

Claim 8. There is an (efficient) algorithm that computes f(x) (with high probability) using O(1) probes to
f̂ .

Decoding Procedure: Pick a random y ← Zm
2 and compute f̂(x+ y)− f̂(x).

Analysis: Observe that for every x, the point x+ y (for uniformly random y) is itself uniformly random.
Therefore, by a union bound,

Pr[f̂(x+ y)− f̂(y) ̸= f(x)] ≤ Pr[f̂(x+ y) ̸= f(x+ y)] + Pr[f̂(y) ̸= f(y)]

≤ 2δ.

4



2.4 Fixing a Lie

The linearity test we described is able to determine (whp) whether π∗ is close to WH(M) for some M ∈
Zn×n
2 . But how do we ensure that this M takes the form uu⊤ for some u ∈ Zn

2?
Solution: We’ll enable the verifier to check this by also including an encoding g of u itself as part of the

proof.
Test: Given f and g (alleged to encode uuT and u, respectively), pick r, s ← Zn

2 uniformly and test if
f(rsT ) = g(r)g(s).

Completeness: If f = WH(uu⊤) and g = WH(u), then

f(rs⊤) =
∑
i,j

(rs⊤)ijuiuj

=
∑
i,j

(riui)(sjuj)

= ⟨r, u⟩ · ⟨s, u⟩
= g(r)g(s).

Soundness: If f = WH(M) and g = WH(u) for some M ̸= uu⊤, then

Pr[f(rs⊤) = g(r)g(s)] = Pr[⟨M, rs⊤⟩ = ⟨u, r⟩ · ⟨u, s⟩]
= Pr[⟨s,Mr⟩ = ⟨s, uu⊤r⟩]

=
1

2
+

1

2
Pr[Mr ̸= uu⊤r]

=
3

4
.

5


	Hardness of Approximation
	PCP Mini
	PCP for QUAD
	Linearity Testing
	Local Decoding
	Fixing a Lie


