CAS CS 535: Complexity Theory

Lecturer: Mark Bun

Fall 2023

Lecture Notes 24:

More Hardness of Approximation, Proof of PCP Mini

Reading.

• Arora-Barak § 11.4-11.5

Last time: PCP Theorem, Hardness of Approximation

1 Hardness of Approximation

Theorem 1 (PCP Theorem). Every language L in NP has a PCP verifier using $O(\log n)$ random coin tosses and making q = O(1) queries to its certificate.

Last time we showed that the PCP Theorem is equivalent to the following statement: There exists a constant q such that $Gap_{1/2}MAXqCSP$ is NP-hard.

Using the idea behind the standard NP-hardness reduction from SAT to 3SAT, this in turn is equivalent to the statement: There exists a constant $\rho < 1$ such that Gap_oMAX3SAT is NP-hard.

Just as how we used the **NP**-hardness of the exact version of 3SAT to prove a host of other **NP**-hardness results, so too can we use the hardness of the approximation version. For instance:

Theorem 2. For every constant $\rho \in (0, 1)$, the problem MAX – INDSET is NP-hard to approximate within a factor of ρ .

The quantifier "for every" ρ here is interesting, because the approximation problem becomes easier as $\rho \rightarrow 0$.

Proof. First, we'll use the standard NP-hardness reduction from 3SAT to INDSET to show this is true for some $\rho < 1$. Then we'll "amplify" the approximation gap to show that the statement is true for every ρ .

Part 1: Let $\rho < 1$ be such that Gap_{ρ} MAX3SAT is NP-hard. Let f be the standard NP-hardness reduction from 3SAT to INDSET. This reduction has the property that, for every 3CNF formula φ , we have

 $\operatorname{val}(\varphi) \ge k \iff f(\varphi)$ has an independent set of size $\ge k$.

Thus, if φ is a formula with *m* clauses, we have

$$\operatorname{val}(\varphi) = m \implies \operatorname{IS}(f(\varphi)) = m$$
$$\operatorname{val}(\varphi) < \rho m \implies \operatorname{IS}(f(\varphi)) < \rho m$$

where IS(G) is the size of the largest independent set in G. So it is **NP**-hard to approximate IS to within a factor of ρ .

Part 2: Now we reduce the problem of ρ -approximating the largest independent set in a graph G to that of ρ^k -approximating the largest independent set in a new graph G^k . The new graph G^k is constructed (in poly-time) from G as follows:

<u>Vertices of G^k </u>: All subsets of k vertices of G Edges of G^k : $S \sim T$ iff $S \cup T$ is <u>not</u> independent in G.

Let T be a maximum-size independent set in G. Then one can check that the largest independent set in G^k is:

$$\{S \subset T \mid |S| = k\}.$$

Thus we have

$$\operatorname{IS}(G^k) = {\operatorname{IS}(G) \choose k} \approx (\operatorname{IS}(G))^k.$$

Thus, we have

$$IS(G) = m \implies IS(G^k) \approx m^k$$
$$IS(G) < \rho m \implies IS(G^k) \lesssim (\rho m)^k = \rho^k m^k$$

We can make the gap ρ^k smaller than any constant by taking k to be a sufficiently large constant.

2 PCP Mini

"The" PCP Theorem says $\mathbf{NP} = \mathbf{PCP}(r(n) = \log n, q(n) = 1)$, where r(n) represents the number of verifier coin tosses, and q(n) is the number of queries. Recall that WLOG, we can always take the length of the proof to be $2^{q(n)} \cdot r(n) = \text{poly}(n)$ in this statement.

Today, we'll prove the following "mini" (or maybe "mega" depending on how you look at it) version of the PCP Theorem:

Theorem 3 (PCP Mini). $NP \subseteq PCP(poly(n), 1)$.

That is, every language in **NP** has a PCP system with a exponentially long proofs. It suffices to design such a PCP system for the **NP**-complete problem

 $QUAD = \{$ satisfiable systems of quadratic equations over $\mathbb{Z}_2 \}$.

Example 4. An instance of QUAD looks like the following:

$$Q = \begin{cases} x_1 x_2 + x_3 x_4 &= 1\\ x_2 x_3 &= 0\\ x_1 x_2 + x_2 x_4 &= 0. \end{cases}$$

This system is satisfiable, say, with satisfying assignment $(x_1, x_2, x_3, x_4) = (1, 1, 0, 1)$.

To see this is NP-complete, we can reduce from CKT - SAT as follows: Label each gate with a distinct variable, and enforce consistency with the gates feeding into it using a quadratic equation. For instance, if a gate requires $z = x \lor y$, add the constraint (1 - x)(1 - y) + z = 1.

2.1 PCP for QUAD

Random subset sum principle: If $u \neq v \in \mathbb{Z}_2^n$, then

$$\Pr_{x \sim \mathbb{Z}_2^n}[\langle u, x \rangle = \langle v, x \rangle] = \frac{1}{2}$$

That is, if u and v are distinct bit vectors, then the probability that the XOR of the same random subset of bits from u and from v agree is 1/2.

Example 5. Let u = 1011, v = 1001. Then $\langle u, x \rangle = \langle v, x \rangle$ if and only if $x_3 = 0$, which happens with probability 1/2.

We'll use this principle in a few places in our PCP construction, but the main use is as follows: If u fails to solve a system Q, then it fails to solve a random linear combination of the constraints with probability 1/2.

The honestly generated proof π for an instance Q of QUAD will consist of the values of <u>all</u> 2^{n^2} quadratic functions of a satisfying assignment to Q. That is,

$$\pi = \left(\sum_{i,j} A_{ij} u_i u_j\right)_{A \in \mathbb{Z}_2^{n \times n}}$$
$$= \left(\langle A, u u^\top \rangle\right)_{A \in \mathbb{Z}_2^{n \times n}}$$
$$=: \mathrm{WH}(u u^\top)$$

which is called the "Walsh-Hadamard" encoding of the $n \times n$ matrix uu^{\top} .

Here's the gameplan for probabilistically verifying an alleged proof π^* :

- 1. Linearity Test: Check (in a manner we'll describe later) that π^* is "close" to $\pi := WH(vv^{\top})$ for some $v \in \mathbb{Z}_2^n$.
- 2. <u>Random Subset Sum</u>: Take a random linear combination of the constraints in Q to obtain a single quadratic equation Ax = b.
- 3. Local Decoding: Compute $\pi(A)$ using a constant number of probes to π^* , and check that it equals b.

2.2 Linearity Testing

Definition 6. For a vector $v \in \mathbb{Z}_2^m$, the Walsh-Hadamard encoding WH(v) is the truth table of the linear function $f : \mathbb{Z}_2^m \to \mathbb{Z}_2$ defined by $f(x) = \langle x, v \rangle$. (This is just a 2^m -bit vector.)

In the linearity testing problem, we are given query access to a function $\hat{f} : \mathbb{Z}_2^m \to \mathbb{Z}_2$, and our goal is to test whether it is "close" to some linear function $f(x) = \langle x, v \rangle$.

Note that a function \hat{f} is linear if and only if $\hat{f}(x+y) = \hat{f}(x) + \hat{f}(y)$ for all $x, y \in \mathbb{Z}_2^m$. The BLR (Blum-Luby-Rubinfeld) Test checks the global property of linearity of a function \hat{f} by just checking whether this identity holds for a random pair x, y:

BLR Test: Pick random $x, y \leftarrow \mathbb{Z}_2^m$ and check that $\hat{f}(x+y) = \hat{f}(x) + \hat{f}(y)$. This test has the following guarantees:

Definition 7. Two functions $f, g : \mathbb{Z}_2^m \to \mathbb{Z}_2$ are δ -close if

$$\Pr_{x \in \mathbb{Z}_2^n}[f(x) = g(x)] \ge 1 - \delta$$

Completeness: If \hat{f} is linear, then $\Pr[\hat{f}(x+y) = \hat{f}(x) + \hat{f}(y)] = 1$.

Soundness: If \hat{f} is <u>not</u> δ -close to any linear function, then

$$\Pr[\hat{f}(x+y) = \hat{f}(x) + \hat{f}(y)] \le 1 - \Omega(\delta)$$

Note that this test requires evaluating \hat{f} at only 3 random locations. Moreover, soundness can be amplified through repetition, at the expense of increasing the number of queries to \hat{f} .

2.3 Local Decoding

Suppose we know that \hat{f} is δ -close to some linear function f. (Note that if $\delta < 1/4$, then this function f is unique.)

Claim 8. There is an (efficient) algorithm that computes f(x) (with high probability) using O(1) probes to \hat{f} .

Decoding Procedure: Pick a random $y \leftarrow \mathbb{Z}_2^m$ and compute $\hat{f}(x+y) - \hat{f}(x)$.

Analysis: Observe that for every x, the point x + y (for uniformly random y) is itself uniformly random. Therefore, by a union bound,

$$\Pr[\hat{f}(x+y) - \hat{f}(y) \neq f(x)] \le \Pr[\hat{f}(x+y) \neq f(x+y)] + \Pr[\hat{f}(y) \neq f(y)]$$

$$< 2\delta.$$

2.4 Fixing a Lie

The linearity test we described is able to determine (whp) whether π^* is close to WH(M) for some $M \in \mathbb{Z}_2^{n \times n}$. But how do we ensure that this M takes the form uu^{\top} for some $u \in \mathbb{Z}_2^n$?

Solution: We'll enable the verifier to check this by also including an encoding g of u itself as part of the proof.

Test: Given f and g (alleged to encode uu^T and u, respectively), pick $r, s \leftarrow \mathbb{Z}_2^n$ uniformly and test if $f(rs^T) = g(r)g(s)$.

 $\textbf{Completeness:} \quad \text{If } f = \text{WH}(uu^{\top}) \text{ and } g = \text{WH}(u), \text{ then }$

$$f(rs^{\top}) = \sum_{i,j} (rs^{\top})_{ij} u_i u_j$$
$$= \sum_{i,j} (r_i u_i) (s_j u_j)$$
$$= \langle r, u \rangle \cdot \langle s, u \rangle$$
$$= g(r)g(s).$$

Soundness: If f = WH(M) and g = WH(u) for some $M \neq uu^{\top}$, then

$$\Pr[f(rs^{\top}) = g(r)g(s)] = \Pr[\langle M, rs^{\top} \rangle = \langle u, r \rangle \cdot \langle u, s \rangle]$$
$$= \Pr[\langle s, Mr \rangle = \langle s, uu^{\top}r \rangle]$$
$$= \frac{1}{2} + \frac{1}{2}\Pr[Mr \neq uu^{\top}r]$$
$$= \frac{3}{4}.$$