
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 26:

Grover’s Algorithm

Reading.

• Arora-Barak § 10.4

Last time: Quantum Circuits, BQP

Recap of Quantum Computing

• An n-qubit quantum system is described by |φ⟩ =
∑

s∈{0,1}n αs |s⟩, where each αs ∈ C and∑
s∈{0,1}n |αs|2 = 1.

• A quantum system evolves via unitary transformations: |φt⟩ = Ut |φt−1⟩ whereUt is a unitary matrix.

• If a quantum state |φ⟩ is measured, each basis state s is observed with probability |as|2.

A quantum circuit is specified by a sequence of local (each applying to O(1) qubits) unitary operations,
essentially WLOG from a finite “universal” gate set. The circuit is applied to an initial state of the form
|x⟩ |0m⟩ where x is the input, and the measured final state determines the output.

1 Unordered Search

Let’s study one of the most important and versatile quantum algorithms, discovered by Lov Grover circa
1996, for solving the “unordered search” problem. The cleanest way to think about this problem is through
the following abstract formulation.

Problem 1 (Unordered Search). Let x ∈ {0, 1}N be a bit string under the promise that there is exactly one
index i such that xi = 1. Identify i using (as few as possible) “queries” of the form “What is the value of bit
xj?” (for j ∈ [N]).

You can convince yourself that every deterministic algorithm for this algorithm requiresN queries in the
worst case. Similarly, a randomized algorithm that succeeds with high probability still needs Ω(N) queries.
Grover Search is a quantum algorithm that solves this problem using only O(

√
N) queries (and moreover,

is optimal for this problem.)
Before describing Grover Search, let us clarify what we mean by giving a quantum algorithm “query”

access to x. Analogously to how we can think of a randomized algorithm as proposing a distribution over
queries to ask (and receiving the corresponding distribution over answers), we can model a quantum algo-
rithm as proposing a superposition over queries and receiving a superposition of answers. As a first attempt
at modeling this, we might imagine x specifying an operator Ox such that Ox |i⟩ = |xi⟩. However, this

1

is not reversible. One way to get a reversible operation is by adding the answer xi to an auxiliary “target”
register: Ox |i, y⟩ = |i, y ⊕ xi⟩.

Observe that if we set the target register to |−⟩ = 1√
2
(|0⟩ − |1⟩), then we get

Ox |i,−⟩ = 1√
2
(|i, xi⟩ − |i, 1− xi⟩) = (−1)xi |i,−⟩ .

This is sometimes called the “phase kickback trick” as it has the effect of loading the desired answer into the
phase (rotation angle in the complex plane) of the state. It means that we can equivalently use the operation

Px |i⟩ := (−1)xi |i⟩

as our model for querying the implicit input x.

Theorem 1 (Grover’s Algorithm). For every N there is a quantum circuit (with access to Px queries) that,
for every x ∈ {0, 1}N with exactly one index i such that xi = 1, finds i with probability at least 1−O(1/N).
Moreover, the circuit invokes Px at most O(

√
N) times and has size O(

√
N logN).

This is perhaps the most basic version of Grover’s result, and by now there are lots of extensions and
generalizations. One of the most important is that one can remove the condition that there is at most one
index i for which xi = 1 without significantly increasing the number of queries.

1.1 Application to Satisfiability

How might we use Grover’s algorithm in this abstract query model to solve a standard computational prob-
lem with an explicitly given input? Let’s go back to our old friend, SAT, thinking of a CNF formula φ
as being evaluated on an n-bit string i ∈ {0, 1}n. To use Grover’s algorithm to find a satisfying assign-
ment to φ, let xi = φ(i). This can be computed by a classical poly-size circuit, which can be written
as a unitary operation Uφ where Uφ |i, 0, 0⟩ = |i, φ(i), zi⟩ and zi is the contents of the classical formula
evaluator’s workspace. One can implement the phase query oracle Px by applying Uφ, then the operation
|b⟩ 7→ (−1)b |b⟩ to the second register, then applyingU−1

φ . (This step of “uncomputing” is necessary because
leaving unclean workspace around can mess up the desired interference effects of a quantum algorithm.)

Now Grover’s algorithm can be used to find a satisfying assignment i (if one exists) using O(
√
N) =

2n/2 queries to the phase oracle. The number of elementary operations beats brute-force classical search by
roughly a quadratic factor.

Note that Grover’s algorithm is optimal amongst all quantum query algorithms for solving abstract
unordered search. So if there is a quantum algorithm for SAT that beats classical brute-force by more than
a quadratic factor, it’s going to have to exploit the structure of the input instance φ beyond its “black-box”
input-output behavior i 7→ φ(i). Many complexity theorists actually believe that quantum algorithms cannot
solve NP-complete problems in polynomial time.

2 Grover’s Algorithm

Grover’s algorithm is actually remarkably simple to state. Define the following “diffusion” operator

D :=
2

N

1 1 . . .
1 1 . . .
...

. . .

− Id .

2

That is, D is the matrix with entries 2/N − 1 down the diagonal, and 2/N everywhere else. (We’ll see in a
bit why D is unitary and how to implement it with basic gates.)

Grover Search Input: String x ∈ {0, 1}N given implicitly by phase oracle Px.

1. Initialize the uniform superposition |u⟩ = 1√
N

∑N
j=1 |j⟩.

2. For t = 1, . . . , T :

(a) Apply the phase oracle Px

(b) Apply the diffusion operator D

3. Measure, and check that the resulting i is a solution.

More compactly, the final state of the algorithm is |ψ⟩ = (DPx)
t |u⟩.

To understand this algorithm, let us interpret the basic operators Px and D as reflections.

Definition 2. Let |v⟩ ∈ CN be a complex vector. Matrix R is a reflection across |v⟩ if

1. R |v⟩ = |v⟩, and

2. R |w⟩ = − |w⟩ for every |w⟩ orthogonal to |v⟩.

When applied to an arbitrary vector |w⟩, such a reflection keeps the component parallel to |v⟩ the same
while negating the perpendicular component.

|𝑣𝑣〉

|𝑤𝑤〉

𝑅𝑅|𝑤𝑤〉

A bit of notation: A “ket” vector |v⟩ is a column vector, whose conjugate transpose is the “bra” vector
⟨v|. The inner product between two vectors becomes the “bra-ket” ⟨v|w⟩, while the outer product is the
matrix |v⟩ ⟨w|.

Claim 3. If |v⟩ is any unit vector, a reflectionR through |v⟩ takes the formR = 2 |v⟩ ⟨v|−Id, and is unitary.

Proof. First, we check that R |v⟩ = 2 |v⟩ ⟨v|v⟩ − |v⟩ = |v⟩. Second, if |w⟩ is orthogonal to |v⟩, then
R |w⟩ = 2 |v⟩ ⟨v|w⟩ − |w⟩ = − |w⟩.

To see that it’s unitary, write an arbitrary unit vector |w⟩ = α |v⟩ + β |v⊥⟩, where |α|2 + |β|2 = 1 and
|v⊥⟩ is orthogonal to |v⟩. Then R |w⟩ = α |v⟩ − β |v⊥⟩ which is also a unit vector.

3

Claim 4. The phase oracle and diffusion operator are reflections:

1. If i is the unique index such that xi = 1, then −Px is a reflection across |i⟩.

2. The diffusion operator D is a reflection across the uniform superposition |u⟩.

Proof. For the phase oracle, note that |1⟩ , . . . , |N⟩ are an orthonormal basis for CN . So it suffices that
−Px |i⟩ = |i⟩, while −Px |j⟩ = − |j⟩ for every j ̸= i.

For the diffusion operator, it suffices to observe that

|u⟩ ⟨u| = 1

N

1 1 . . .
1 1 . . .
...

. . .

 ,

so D = 2 |u⟩ ⟨u| − Id.

Thus, Grover’s algorithm repeatedly applies these two reflections to “rotate” the starting vector |u⟩
toward the destination |i⟩. To see how this works, let

|B⟩ = 1√
N − 1

∑
j ̸=i

|j⟩

be the uniform superposition over indices not equal to i. Thus, |u⟩ =
√
1− 1/N |B⟩ + 1/

√
N |i⟩, and

moreover, every intermediate state of Grover’s algorithm lies in the subspace V spanned by the orthogonal
vectors |i⟩ and |B⟩. Restricted to this subspace V , the operator Px itself is a reflection across the “bad” state
|B⟩.

Mathematically, if we let ProjV = |i⟩ ⟨i|+ |B⟩ ⟨B| be the projector onto V , we see that

Px ProjV = (Id−2 |i⟩ ⟨i|) ProjV = |B⟩ ⟨B| − |i⟩ ⟨i| = 2 |B⟩ ⟨B| − ProjV .

So restricted to the two-dimensional (real) subspace V , we have that the first Grover iteration DPx does
the following to the uniform superposition |u⟩:

|𝑢𝑢〉

|𝐵𝐵〉

|𝑖𝑖〉

𝑃𝑃𝑥𝑥|𝑢𝑢〉

𝐷𝐷𝑃𝑃𝑥𝑥|𝑢𝑢〉

𝜃𝜃
𝜃𝜃

3𝜃𝜃

4

where θ is the initial angle between |u⟩ and |B⟩. We can estimate this initial angle as

cos θ = ⟨u|B⟩ =
√
1− 1

N
≈ 1− 1

2N
,

and using the Taylor approximation cos θ ≈ 1− θ2/2, we see θ ≈ 1/
√
N .

In general, every iteration of Grover’s algorithm has the effect of taking a state |ψ⟩, whose angle with
|B⟩ is ρ, and increasing it to ρ+ 2θ. Thus, after T iterations, the angle away from |B⟩ is (2T + 1)θ. To get
close to |i⟩, which is an angle of π/2 away from |B⟩, we thus expect having to take a number of iterations
T for which (2T + 1)θ ≈ 1, i.e., T ≈

√
N .

More precisely, after T iterations, the state of the algorithm is

sin((2T + 1)θ) |i⟩+ cos((2T + 1)θ) |B⟩ .

The probability of observing |i⟩ after measuring is thus sin2((2T + 1)θ).
We want this probability to be as close to 1 as possible, or equivalently, for (2T + 1)θ to be as close to

π/2 as possible. Taking T = O(
√
N) to be the integer for which (2T + 1)θ is as close to π/2 as possible

results in error at most sin2(θ) ≤ O(1/N).

5

	Unordered Search
	Application to Satisfiability

	Grover's Algorithm

