
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 5:

Hierarchy Theorems, Padding, Ladner’s Theorem

Reading.

• Arora-Barak § 3.1-3.3, 4.1.3

Last time: Decision vs. Search

• M runs in time f(n) if it halts within f(|x|) steps for every x ∈ {0, 1}∗.

• M runs in space f(n) if it visits at most f(|x|) cells of its work tapes for every x ∈ {0, 1}∗.

Definition 1. For a function f(n), define the complexity classes

DTIME(f(n)) = {L ⊆ {0, 1}∗ | L is decidable in time O(f(n))}.

SPACE(f(n)) = {L ⊆ {0, 1}∗ | L is decidable in space O(f(n))}.

1 Hierarchy Theorems

Reductions and the theory of NP-completeness give us tools to understand the relative hardness of compu-
tational problems. But on their own, they don’t give us a way to establish, say, that any of the problems in
NP are themselves actually hard.

The main tool we have for actually separating complexity classes is diagonalization, which we’ll first
use here to prove hierarchy theorems. A hierarchy theorem says that strictly more of a particular resource
lets you compute strictly more things.

We’ll start with the deterministic time hierarchy theorem, where the resource is time on a deterministic
TM. To state the theorem precisely, we need a slightly annoying definition.

Definition 2. A function f : N → N is time-constructible if there exists a TM computing f(|x|) within
O(f(|x|)) steps.

Most reasonable functions f(n) ≥ n are time-constructible, e.g., n1.5, n log n, 10n. Some functions that
are not time-constructible are log n, n0.9 (too small), Busy-Beaver(n) (too large to be computable).

Theorem 3 (Deterministic Time Hierarchy Theorem). If f and g are time-constructible and f(n) log f(n) =
o(g(n)), then

DTIME(f(n)) ⊊ DTIME(g(n)).

1

That is, while DTIME(f(n)) ⊆ DTIME(g(n)) (obviously), there exists a language L ∈ DTIME(g(n)),
but L /∈ DTIME(f(n)).

For example, if f(n) = n and g(n) = n log2 n, then because n log n = o(n log2 n) we have that
DTIME(n) ⊊ DTIME(n log2 n).

Before proving the theorem, I want to draw attention to two apparent deficiencies. One is the “extra”
factor of log f(n); ideally, one would like to be able to separate time classes whenever f(n) = o(g(n)).
This factor has to do with the best known simulation of arbitrary-tape TMs by 3-tape TMs, which incurs the
same logarithmic runtime blowup.

Second is the restriction to time-constructible f and g. This looks like a technicality, but it turns out to
be important to the truth of the statement. There’s a result called the Borodin-Trakhtenbrot Gap Theorem
which implies there is a non-time constructible function f for which DTIME(f(n)) = DTIME(2f(n)).

As mentioned before, the idea we’ll use to prove the time hierarchy theorem is diagonalization. This is
the same idea that was implicit in our construction of the undecidable language SNA, so let’s spell out that
construction in a bit more detail.

Imagine constructing a 2-dimensional grid where rows are indexed by possible input strings x, and
columns are indexed by Turing machines encoded by strings α. In each cell (x, α), we write the value of
Mα(x).

𝛼1 𝛼2 𝛼3 𝛼4

𝑥1 0 1 0 0

𝑥2 1 1 0 000

𝑥3 11 10 ⊥ 0

𝑥4 1 0 1 1001

…

…

(Encodings of) Turing machines

In
p

u
ts

1

0

1

1

The language SNA was defined by “flipping the diagonal” to force every TM Mα to make a mistake
when run on input x = α. That is,

SNA = {x | Mx(x) ̸= 1}.

To prove our time hierarchy theorem, we’d like to use the same idea, but

1. The language we obtain by flipping the diagonal should be decidable in O(g(n)) time

2. We only need to thwart machines that run in time O(f(n)).

As a first attempt to do this, we might try only enumerating over all TMs running in time O(f(n)). The
problem is that it’s undecidable to determine whether a given TM M runs in time O(f(n)). So instead,
we’ll go back to enumerating over all TMs, but stop each simulation early, after only g(n) steps.

Proof. We construct a language L ∈ DTIME(g(n)) \ DTIME(f(n)) as follows. Construct the TM
D(x) =

2

1. Run the UTM U(x, x) to simulate Mx on input x, and stop after the UTM has run for g(|x|) time
steps.

2. If U has output 1, return 0. Otherwise, return 1.

Let L be the language decided by D. By construction, L ∈ DTIME(g(n)).
Now suppose for the sake of contradiction that some TM M decides L in time O(f(n)). By the effi-

ciency of the UTM, simulating M to completion on any input x takes time cMf(|x|) · log f(|x|) for some
cM depending only on the machine M .

Now this is the part of the proof where some assumptions about how we encode TMs matter. Let us
assume that every TM has infinitely many encodings (say, by appending an arbitrary number of trailing
0s). Then the fact that f(n) log f(n) = o(g(n)) implies that there exists some encoding x∗ of M such that
g(|x∗|) > cMf(|x∗|) · log f(|x∗|).

Thus, when we run D(x∗), the simulation has enough time to finish, and so D(x∗) = 1− U(x∗, x∗) =
1−M(x∗), a contradiction.

The same proof goes through for space, but the hierarchy is even tighter because the UTM can simulate
space-bounded computation with only a constant-factor overhead.

Theorem 4 (Deterministic Space Hierarchy Theorem). If f and g are space-constructible and f(n) =
o(g(n)), then

SPACE(f(n)) ⊊ SPACE(g(n)).

2 Nondeterministic Time Hierarchy

A hierarchy theorem also holds for nondeterministic time. What do we have going for us when trying to
prove such a theorem?

Good news: It’s possible to simulate an arbitrary k-tape NTM by a 3-tape NTM using only a constant
factor blowup in runtime. That is, there exists a universal NTM that can simulate any NTM running in time
T (n) using time O(T (n)).

Bad news: Central to our construction of the language L in the deterministic case was our ability to “flip”
the answer produced by the UTM. It isn’t so clear how to do this with the output of an NTM because of the
asymmetry between its accept and reject conditions. (This is the same issue underlying the NP vs. coNP
problem.)

Despite this fundamental issue, we can still prove a hierarchy theorem using a more clever diagonaliza-
tion. Here’s the statement:

Theorem 5. Let f and g be time-constructible functions such that f(n+ 1) = o(g(n)). Then

NTIME(f(n)) ⊊ NTIME(g(n)).

The proof in Arora-Barak is due to Zák, but I’ll sketch a different (simpler, in my opinion) version due
to Fortnow and Santhanam.

As before, we’ll define the language in NTIME(g(n)) \NTIME(f(n)) by an NTM D deciding it.
This NTM will expect two inputs x, y. Let ε denote the empty string.

D(x, y) =

3

1. If |y| < g(|x|): Use the UNTM to simulate Mx(x, y0) and Mx(x, y1), stopping each after g(|x|+ |y|)
time steps have been simulated. Accept iff both runs accept.

2. If |y| ≥ g(|x|): Use the UNTM to simulate Mx(x, ε) using y as the choice of nondeterminism,
stopping after g(|x|) steps have been simulated. Flip the answer.

Let L be the language decided by D. The fact that the UNTM runs with constant simulation overhead
implies that L ∈ NTIME(g(n)).

Now suppose for the sake of contradiction that some NTM N decides L in time ≤ cf(n) for some
constant c. Let x∗ be an encoding of N such that cf(|x∗| +m + 1) ≤ g(|x∗| +m) for all m ≥ 0, which
exists because f(n+ 1) = o(g(n)). Then

(x∗, ε) ∈ L ⇐⇒ N(x∗, 0) and N(x∗, 1) both accept,

since running the machine D(x∗, ε) enters case 1, and cf(|x∗|+ 1) ≤ g(|x∗|) implies that both simulations
therein have time to run to completion. Since N decides L, this is equivalent to

(x∗, y) ∈ L ∀|y| = 1.

We can repeat this argument, increasing the length of y one bit at a time, yielding

(x∗, ε) ∈ L ⇐⇒ (x∗, y) ∈ L ∀|y| = 1

⇐⇒ (x∗, y) ∈ L ∀|y| = 2

. . .

⇐⇒ (x∗, y) ∈ L ∀|y| = g(|x∗|).

Now for all strings y of length g(|x∗|), running D(x∗, y) enters case 2. So

(x∗, y) ∈ L ∀|y| = g(|x∗|) ⇐⇒ N(x∗, ε) rejects for every choice of nondeterminism |y| = g(|x∗|).

Since the runtime of N is bounded by cf(|x∗|) ≤ g(|x∗|), this is equivalent to N(x∗, ε) rejecting overall,
which is a contradiction.

3 Padding

Padding is a useful technical trick for showing (among other things) that complexity class collapses “scale
up” with more resources, or equivalently, that class separations “scale down.” It’s best illustrated with an
example. (Theorem 2.22 in Arora-Barak.)

Theorem 6. If P = NP, then EXP = NEXP.

To prove this, it suffices to show that if L ∈ NTIME(2n
c
) for some constant c, and P = NP, then

L ∈ EXP. The way we’re going to do this is to “pad” the language L to construct a new language Lpad that
is easier to solve relative to its input length. Schematically:

4

𝐿 ∈ NTIME(2𝑛
𝑐
)

𝐿pad ∈ NP 𝐿pad ∈ P

𝐿 ∈ EXP

(1) (2)

⟹
P = NP

The construction of this padded language is as follows.

Lpad = {x12|x|
c

| x ∈ L}.

Claim 1. If L ∈ NTIME(2n
c
), then Lpad ∈ NP.

Proof. Let N be an NTM deciding L in time O(2n
c
). Consider the following NTM N ′ deciding Lpad: On

input y:

1. Check if y = x12
|x|c

for some x. If not, reject.

2. Run N on input x and return its answer.

This runs in time O(2|x|
c
) = O(|y|), which is polynomial in the input length.

Claim 2. If Lpad ∈ P, then L ∈ EXP.

Proof. Let M decide Lpad in (deterministic) time O(nk). Consider the following TM M ′ deciding L: On
input x:

1. Construct y = x12
|x|c

.

2. Run M on input y and return its answer.

This runs in time O(|y|k) = O(2k|x|
c
) = O(2|x|

c+1
), which is exponential in the input length.

4 Ladner’s Theorem

[I didn’t get to talk about this in class :(, but the theorem is fascinating and the idea behind the proof is really
cool, so I encourage you to look at it!]

Ladner’s Theorem is an interesting application of padding and diagonalization that addresses the follow-
ing basic question about the structure of NP: Are there languages that are neither in P nor NP-complete?
The answer is that there are, assuming P ̸= NP. (In fact, there’s an infinite hierarchy of classes strictly
containing P and strictly contained in NP.)

Theorem 7. If P ̸= NP, there exists a language L such that L /∈ P and L is not NP-complete.

5

Here’s a brief proof sketch, with more details in Arora-Barak. The basic idea is to define a padded
version of SAT that reduces its hardness in a controlled manner. Specifically, for a function T (n), define

SATT = {φ1T (|φ|) | φ is satisfiable}.

The hardness of SATT depends on the growth rate of T . As two extreme examples:

1. If T is polynomial, then SATT is NP-complete. The poly-time reduction from SAT to SATT is just
f(φ) = φ1T (|φ|).

2. If T (n) = 2n, then SATT ∈ P. This is because, given φ1T (|φ|), an algorithm can just brute force over
all satisfying assignments in time 2|φ|, which is now linear in the input length.

The proof of Ladner’s Theorem (roughly) makes the following choice for T (n): It is the smallest func-
tion T such that SATT can be solved in time T (n). [This self-referential definition is tricky to formalize,
and it’s not exactly this. The formal definition uses diagonalization.]

Now there are two cases depending on what T turns out to be.

1. If T (n) = poly(n), then SATT is NP-complete, as we said above. But now there’s a T (n)-time
algorithm solving this NP-complete problem, so P = NP.

2. If T (n) = nω(1) (e.g., T (n) = nlogn), our goal is to show that SATT is NP-complete =⇒ P = NP.
So suppose SATT is NP-complete. Then SAT ≤p SATT via some O(nk)-time computable reduction
f . We’ll use this to give a poly-time algorithm for SAT itself. Let φ be a Boolean formula of length
n. First, apply the reduction f to get a SATT instance φ11

T (|φ1|). Since T is a growing function,
|φ1| ≪ |φ|; say for concreteness, that |φ1| ≤

√
|φ|. We can repeat this process log logn times until

we get down to a formula φlog logn of constant size that is satisfiable iff φ is; at this point, we can just
brute force over candidate assignments.

6

	Hierarchy Theorems
	Nondeterministic Time Hierarchy
	Padding
	Ladner's Theorem

