
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 7:

Savitch’s Theorem, PSPACE, PSPACE-Completeness

Reading.

• Arora-Barak § 4.2

Last time: Relativization barrier, space complexity

Space Complexity Classes

SPACE(S(n)) = {L ⊆ {0, 1}∗ | L is decidable by a deterministic TM in space O(S(n))}.
NSPACE(S(n)) = {L ⊆ {0, 1}∗ | L is decidable by an NTM in space O(S(n))}.

Given a (N)TM M and input x, define the configuration graph GM,x as follows. The graph has a vertex
for every triple of the form

C = (state, head locations,work tape contents),

and an edgeC → C ′ if there exists a transition that takesC toC ′. For example, if [pretending we’re working
with a one-tape TM for simplicity] the transition functions of an NTM specify δ0(q7, 0) = (q4, 0, L) and
δ1(q7, 0) = (q3, 1, R), then vertex C = (q7, 3, 10010) has outgoing edges to C ′

0 = (q4, 2, 10010) and
C ′
1 = (q3, 4, 10110).

Without loss of generality, we can assume that M erases its worktapes and restores its heads to the left
after halting, so there are unique accept and reject vertices, Cacc and Crej, in the configuration graph.

The configuration graph has the following useful property.

M(x) accepts ⇐⇒ there exists a path from Cstart to Cacc in GM,x.

Last time, we stated and proved half of the following result relating time and space complexity classes:

Theorem 1. For space-constructible S(n), we have

DTIME(S(n)) ⊆NTIME(S(n)) ⊆ SPACE(S(n))

⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))) =:

∞⋃
c=1

DTIME(2cS(n)).

Proof of NSPACE(S(n)) ⊆ DTIME(2O(S(n))). Let N be an NTM running in space S(n). Consider
the following deterministic TM:

On input x:

1



1. Construct the configuration graph GN,x

2. Run BFS to determine if there is a path from Cstart to Cacc in GN,x. Accept iff this is the case.

We can reason about the time needed to construct GN,x as follows. First, the size of each configuration is
O(S(|x|)). This means that the number of possible configurations, i.e., the size of the graph, is 2O(S(n)).
Therefore, one can materialize the whole graph and run BFS on it in time 2O(S(n)).

1 Savitch’s Theorem

Theorem 2. For all space-constructible S(n), we have NSPACE(S(n)) ⊆ SPACE(S(n)2).

Proof. Let L be decidable by an NTM N running in space S(n). Then

x ∈ L ⇐⇒ ∃ a path from Cstart to Cacc in GN,x

⇐⇒ ∃ a path from Cstart to Cacc in GN,x of length ≤M,

where M = 2O(S(n)) is the number of vertices in GN,x. (This holds because we can remove loops from any
longer path.)

The main idea is to determine whether such a path exists by a divide-and-conquer algorithm. Specifi-
cally, we’ll design a recursive algorithm called Reach with the following property:

Reach(u, v, i) =

{
YES if ∃ a path from u to v in GN,x of length ≤ 2i

NO otherwise.

That is, Reach determines whether there is a path from vertex u to v in the configuration graph with length
at most 2i. Note that x ∈ L ⇐⇒ Reach(Cstart, Caccept, logM) = YES.

So now let’s describe the algorithm Reach(u, v, i):
Base case: Suppose i = 0. If u = v or u→ v, return YES. Otherwise, return NO.
Recursive case: For each vertex z in GN,x:

• Compute Reach(u, z, i− 1)

• Compute Reach(z, v, i− 1) (using the same space)

• Output YES iff both runs say YES

Output NO.

This works because of the following observation: For vertices u, v, there exists a path of length 2i from
u to v iff there exists a “midpoint” z such that there are paths from u to z and from z to v both of length at
most 2i−1.

To calculate the space usage, let SN,i denote the space consumption of Reach when the underlying NTM
is N and the length parameter is i. Then

SN,i = SN,i−1︸ ︷︷ ︸
recursive call

+ O(logM)︸ ︷︷ ︸
counter over z

.

Unrolling the recursion gives us SN,logM = O(log2M) = O(S(n)2).

2



2 Some Space Classes

PSPACE =

∞⋃
c=1

SPACE(nc)

NPSPACE =
∞⋃
c=1

NSPACE(nc) = PSPACE

L = SPACE(log n)

NL = NSPACE(log n).

The class we’ll start understanding today is PSPACE, which is big. Pretty much any reasonable-
looking algorithm solves a problem in PSPACE.

Example 3. SAT ∈ SPACE(n) ⊆ PSPACE.
This is because we can very efficiently recycle space to try all possible satisfying assignments:
On input φ:
For each candidate assignment u:

Evaluate φ(u), accept if = 1. Erase work tape.
Reject.

3 PSPACE-Completeness

The open question of the day is P ?
= PSPACE. The answer seems to be no; P = PSPACE would, in

particular, imply P = NP. But we are still far from ruling this out.
As with NP, a useful starting point for studying this and other questions is the notion of PSPACE-

completeness.

Definition 4. A language L is PSPACE-hard if A ≤p L for every A ∈ PSPACE. (A is poly-time
reducible to L.)

L is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.

3.1 A PSPACE-Complete Problem

The canonical PSPACE-complete problem is a generalization of SAT defined in terms of “quantified
Boolean formulas.” To build up to these, recall what it means for a formula to be satisfiable:

(x ∨ y) ∧ z ∈ SAT ⇐⇒ Ψ := ∃x∃y∃z(x ∨ y) ∧ z is “true”.

The formula Ψ is a “quantified Boolean formula”, i.e., a formula where every variable is bound by a quan-
tifier. In general, a (fully) quantified Boolean formula might mix existential and universal quantifiers.

Example 5. Let Ψ = ∃x∀y∃z(x ∨ y) ∧ z. The QBF Ψ evaluates to “true.” To see why this is the case, set
x to 1. Then for either choice of y ∈ {0, 1}, setting z = 1 makes the formula true.

In general, a QBF looks like

Ψ = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn)

where each quantifier Qi = ∃ or ∀.

3



Game view: Since every variable in a QBF is bound, it has a definite truth value (either true or false). A
helpful way of thinking about determining this value is through a two player game. Suppose for simplicity
that we have a QBF of the form

Ψ = ∃x1∀y1∃x2∀y2 . . . ∃xn∀ynφ(x1, . . . , xn, y1, . . . , yn).

Player 1, the “Existential” player, has the goal of setting the xi’s to make the formula φ evaluate to
“true”.

Player 2, the “Universal player” (or adversary), has the goal of setting the yi’s to make the formula
evaluate to “false.”

The QBF Ψ overall is “true” iff Player 1 has a winning strategy: No matter what Player 2 does in setting
the y variables, Player 1 can come up with a way to set the x variables to make the underlying formula true.

Now you try: What is the truth value of the QBF ∃x1∀y1∃x2∀y2(x1 ∧ y1) ∨ (x2 ∧ y2)?
Now for our PSPACE-complete problem:

Definition 6.
TQBF = {Ψ | Ψ is a true quantified Boolean formula}.

Theorem 7. TQBF is PSPACE-complete.

Proof. As usual, there are two things to prove: First, that TQBF ∈ PSPACE, and second, that it is
PSPACE-hard.

TQBF ∈ PSPACE. We design a (space-recycling) recursive algorithm A as follows. Consider an input
of the form Ψ = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn).
Base case: If n = 0, then φ is a constant, so just output it.
Recursive case:
If Q1 = ∃:

• Run A(Ψ|x1=0)

• Run A(Ψ|x1=1)

• Accept if either run accepts.

If Q1 = ∀:

• Run A(Ψ|x1=0)

• Run A(Ψ|x1=1)

• Accept if both runs accept.

Correctness holds by induction on the number of quantifiers of the formula.
To analyze the space usage, let Sn,m denote the space consumption when n is the number of variables

and m = |φ|. Then we have the recurrence

S0,m = O(m), Sn,m = Sn−1,m +O(m)

and so Sn,m = O(mn).

4



TQBF is PSPACE-hard. We need to show that for every language L ∈ PSPACE, we have L ≤p

TQBF. Let L be such a language and let M decide L in (polynomial) space S(n). Our goal is to, in
poly-time, convert an instance x into a QBF Ψ such that M(x) = 1 ⇐⇒ Ψ ∈ TQBF.

Our first idea will be to define a two-player game such that Player 1 has a winning strategy in this game
iff M(x) = 1. Then we’ll formalize this game into a QBF.

Recall from our discussion of configuration graphs that

M(x) = 1 ⇐⇒ there exists a path from Cstart to Cacc in GM,x

Consider the following (informal) game:
Player 1: The goal is to show that there exists a path (of length 2O(S(n))) from Cstart to Cacc.
Player 2: The goal is to show that there is no such path.
When it’s Player 1’s turn to move, they’ll pick a vertex v that’s on the alleged path from Cstart to Cacc.

When it’s Player 2’s turn, they’ll issue a “challenge” to recurse either to the left or right of v, i.e., to
force Player 1 in the next round to either exhibit a vertex on the path from Cstart to v or from v to Cacc And
so on and so forth...

The point of this game is that Player 1 has a winning strategy iff there indeed exists a path from Cstart to
Cacc in GM,x.

Now let’s turn this intuitive description of a game into a QBF. Let m = O(S(n)) be the number of
bits needed to encode one configuration (vertex of the configuration graph). The idea will be to recursively
construct formulas of the form Ψi(C,C

′), for C,C ′ ∈ {0, 1}m, such that

Ψi(C,C
′) ∈ TQBF ⇐⇒ ∃ a path of length ≤ 2i from C to C ′.

The final formula we want will be Ψm(Cstart, Cacc).
Base case: If i = 0, we use the proof of the Cook-Levin Theorem to encode the question of whether

there is a transition from C to C ′ as an unquantified formula Ψ0(C,C
′).

Recursive case: As a first attempt, we might want to define Ψi(C,C
′) = ∃vΨi−1(C, v) ∧ ψi−1(v, C

′).
The problem with this is that the size of the formula doubles with each call, so we’d end up with an expo-
nentially long formula.

A better idea is introduce auxiliary variables to capture an equivalent condition without blowing up the
formula size. One way to do this is to define

Ψi(C,C
′) = ∃v∀x, y (x = C ∧ y = v) ∨ (x = v ∧ y = C ′) =⇒ Ψi−1(x, y).

Note that one can unpack the =⇒ connective using ORs and negations, and “push all quantifiers” in Ψi−1

to the left of the whole expression.
The time it takes to generate each formula is polynomial in the size, which by induction, is at most

|Ψi| ≤ O(m2).

5


	Savitch's Theorem
	Some Space Classes
	PSPACE-Completeness
	A PSPACE-Complete Problem


