Lecture Notes 7:

Savitch's Theorem, PSPACE, PSPACE-Completeness

Reading.

- Arora-Barak § 4.2

Last time: Relativization barrier, space complexity

Space Complexity Classes

$\operatorname{SPACE}(S(n))=\left\{L \subseteq\{0,1\}^{*} \mid L\right.$ is decidable by a deterministic TM in space $\left.O(S(n))\right\}$.
NSPACE $(S(n))=\left\{L \subseteq\{0,1\}^{*} \mid L\right.$ is decidable by an NTM in space $\left.O(S(n))\right\}$.
Given a (N)TM M and input x, define the configuration graph $G_{M, x}$ as follows. The graph has a vertex for every triple of the form

$$
C=(\text { state }, \text { head locations }, \text { work tape contents })
$$

and an edge $C \rightarrow C^{\prime}$ if there exists a transition that takes C to C^{\prime}. For example, if [pretending we're working with a one-tape TM for simplicity] the transition functions of an NTM specify $\delta_{0}\left(q_{7}, 0\right)=\left(q_{4}, 0, L\right)$ and $\delta_{1}\left(q_{7}, 0\right)=\left(q_{3}, 1, R\right)$, then vertex $C=\left(q_{7}, 3,10010\right)$ has outgoing edges to $C_{0}^{\prime}=\left(q_{4}, 2,10010\right)$ and $C_{1}^{\prime}=\left(q_{3}, 4,10110\right)$.

Without loss of generality, we can assume that M erases its worktapes and restores its heads to the left after halting, so there are unique accept and reject vertices, $C_{\text {acc }}$ and $C_{\text {rej }}$, in the configuration graph.

The configuration graph has the following useful property.

$$
M(x) \text { accepts } \Longleftrightarrow \text { there exists a path from } C_{\text {start }} \text { to } C_{\mathrm{acc}} \text { in } G_{M, x}
$$

Last time, we stated and proved half of the following result relating time and space complexity classes:
Theorem 1. For space-constructible $S(n)$, we have

$$
\operatorname{DTIME}(S(n)) \subseteq \operatorname{NTIME}(S(n)) \subseteq \operatorname{SPACE}(S(n))
$$

$$
\subseteq \operatorname{NSPACE}(S(n)) \subseteq \mathbf{D T I M E}\left(2^{O(S(n))}\right)=: \bigcup_{c=1}^{\infty} \operatorname{DTIME}\left(2^{c S(n)}\right) .
$$

Proof of NSPACE $(S(n)) \subseteq$ DTIME $\left(2^{O(S(n))}\right)$. Let N be an NTM running in space $S(n)$. Consider the following deterministic TM:

On input x :

1. Construct the configuration graph $G_{N, x}$
2. Run BFS to determine if there is a path from $C_{\text {start }}$ to C_{acc} in $G_{N, x}$. Accept iff this is the case.

We can reason about the time needed to construct $G_{N, x}$ as follows. First, the size of each configuration is $O(S(|x|))$. This means that the number of possible configurations, i.e., the size of the graph, is $2^{O(S(n))}$. Therefore, one can materialize the whole graph and run BFS on it in time $2^{O(S(n))}$.

1 Savitch's Theorem

Theorem 2. For all space-constructible $S(n)$, we have $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{SPACE}\left(S(n)^{2}\right)$.
Proof. Let L be decidable by an NTM N running in space $S(n)$. Then

$$
\begin{aligned}
x \in L & \Longleftrightarrow \exists \text { a path from } C_{\text {start }} \text { to } C_{\mathrm{acc}} \text { in } G_{N, x} \\
& \Longleftrightarrow \exists \text { a path from } C_{\text {start }} \text { to } C_{\mathrm{acc}} \text { in } G_{N, x} \text { of length } \leq M,
\end{aligned}
$$

where $M=2^{O(S(n))}$ is the number of vertices in $G_{N, x}$. (This holds because we can remove loops from any longer path.)

The main idea is to determine whether such a path exists by a divide-and-conquer algorithm. Specifically, we'll design a recursive algorithm called Reach with the following property:

$$
\operatorname{Reach}(u, v, i)= \begin{cases}\text { YES } & \text { if } \exists \text { a path from } u \text { to } v \text { in } G_{N, x} \text { of length } \leq 2^{i} \\ \text { NO } & \text { otherwise. }\end{cases}
$$

That is, Reach determines whether there is a path from vertex u to v in the configuration graph with length at most 2^{i}. Note that $x \in L \Longleftrightarrow \operatorname{Reach}\left(C_{\text {start }}, C_{\text {accept }}, \log M\right)=$ YES.

So now let's describe the algorithm $\operatorname{Reach}(u, v, i)$:
Base case: Suppose $i=0$. If $u=v$ or $u \rightarrow v$, return YES. Otherwise, return NO.
Recursive case: For each vertex z in $G_{N, x}$:

- Compute Reach $(u, z, i-1)$
- Compute Reach $(z, v, i-1)$ (using the same space)
- Output YES iff both runs say YES

Output NO.

This works because of the following observation: For vertices u, v, there exists a path of length 2^{i} from u to v iff there exists a "midpoint" z such that there are paths from u to z and from z to v both of length at most 2^{i-1}.

To calculate the space usage, let $S_{N, i}$ denote the space consumption of Reach when the underlying NTM is N and the length parameter is i. Then

$$
S_{N, i}=\underbrace{S_{N, i-1}}_{\text {recursive call }}+\underbrace{O(\log M)}_{\text {counter over } z} .
$$

Unrolling the recursion gives us $S_{N, \log M}=O\left(\log ^{2} M\right)=O\left(S(n)^{2}\right)$.

2 Some Space Classes

$$
\begin{aligned}
\operatorname{PSPACE} & =\bigcup_{c=1}^{\infty} \operatorname{SPACE}\left(n^{c}\right) \\
\text { NPSPACE } & =\bigcup_{c=1}^{\infty} \operatorname{NSPACE}\left(n^{c}\right)=\operatorname{PSPACE} \\
\mathbf{L} & =\operatorname{SPACE}(\log n) \\
\mathbf{N L} & =\operatorname{NSPACE}(\log n) .
\end{aligned}
$$

The class we'll start understanding today is PSPACE, which is big. Pretty much any reasonablelooking algorithm solves a problem in PSPACE.

Example 3. SAT $\in \operatorname{SPACE}(n) \subseteq$ PSPACE.
This is because we can very efficiently recycle space to try all possible satisfying assignments:
On input φ :
For each candidate assignment u :
Evaluate $\varphi(u)$, accept if $=1$. Erase work tape.
Reject

3 PSPACE-Completeness

The open question of the day is $\mathbf{P} \stackrel{?}{=}$ PSPACE. The answer seems to be no; $\mathbf{P}=\mathbf{P S P A C E}$ would, in particular, imply $\mathbf{P}=\mathbf{N P}$. But we are still far from ruling this out.

As with NP, a useful starting point for studying this and other questions is the notion of PSPACEcompleteness.

Definition 4. A language L is PSPACE-hard if $A \leq_{p} L$ for every $A \in$ PSPACE. (A is poly-time reducible to L.)
L is PSPACE-complete if $L \in$ PSPACE and L is PSPACE-hard.

3.1 A PSPACE-Complete Problem

The canonical PSPACE-complete problem is a generalization of SAT defined in terms of "quantified Boolean formulas." To build up to these, recall what it means for a formula to be satisfiable:

$$
(x \vee y) \wedge z \in \mathrm{SAT} \Longleftrightarrow \Psi:=\exists x \exists y \exists z(x \vee y) \wedge z \text { is "true". }
$$

The formula Ψ is a "quantified Boolean formula", i.e., a formula where every variable is bound by a quantifier. In general, a (fully) quantified Boolean formula might mix existential and universal quantifiers.

Example 5. Let $\Psi=\exists x \forall y \exists z(x \vee y) \wedge z$. The QBF Ψ evaluates to "true." To see why this is the case, set x to 1 . Then for either choice of $y \in\{0,1\}$, setting $z=1$ makes the formula true.

In general, a QBF looks like

$$
\Psi=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each quantifier $Q_{i}=\exists$ or \forall.

Game view: Since every variable in a QBF is bound, it has a definite truth value (either true or false). A helpful way of thinking about determining this value is through a two player game. Suppose for simplicity that we have a QBF of the form

$$
\Psi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \ldots \exists x_{n} \forall y_{n} \varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) .
$$

Player 1, the "Existential" player, has the goal of setting the x_{i} 's to make the formula φ evaluate to "true".

Player 2, the "Universal player" (or adversary), has the goal of setting the y_{i} 's to make the formula evaluate to "false."

The QBF Ψ overall is "true" iff Player 1 has a winning strategy: No matter what Player 2 does in setting the y variables, Player 1 can come up with a way to set the x variables to make the underlying formula true.

Now you try: What is the truth value of the $\mathrm{QBF} \exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2}\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right)$?
Now for our PSPACE-complete problem:

Definition 6.

$$
\text { TQBF }=\{\Psi \mid \Psi \text { is a true quantified Boolean formula }\} .
$$

Theorem 7. TQBF is PSPACE-complete.
Proof. As usual, there are two things to prove: First, that TQBF \in PSPACE, and second, that it is PSPACE-hard.

TQBF \in PSPACE. We design a (space-recycling) recursive algorithm A as follows. Consider an input of the form $\Psi=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$.
Base case: If $n=0$, then φ is a constant, so just output it.
Recursive case:
If $Q_{1}=\exists$:

- $\operatorname{Run} A\left(\left.\Psi\right|_{x_{1}=0}\right)$
- Run $A\left(\left.\Psi\right|_{x_{1}=1}\right)$
- Accept if either run accepts.

If $Q_{1}=\forall$:

- $\operatorname{Run} A\left(\left.\Psi\right|_{x_{1}=0}\right)$
- Run $A\left(\left.\Psi\right|_{x_{1}=1}\right)$
- Accept if both runs accept.

Correctness holds by induction on the number of quantifiers of the formula.
To analyze the space usage, let $S_{n, m}$ denote the space consumption when n is the number of variables and $m=|\varphi|$. Then we have the recurrence

$$
S_{0, m}=O(m), \quad S_{n, m}=S_{n-1, m}+O(m)
$$

and so $S_{n, m}=O(m n)$.

TQBF is PSPACE-hard. We need to show that for every language $L \in$ PSPACE, we have $L \leq_{p}$ TQBF. Let L be such a language and let M decide L in (polynomial) space $S(n)$. Our goal is to, in poly-time, convert an instance x into a QBF Ψ such that $M(x)=1 \Longleftrightarrow \Psi \in$ TQBF.

Our first idea will be to define a two-player game such that Player 1 has a winning strategy in this game iff $M(x)=1$. Then we'll formalize this game into a QBF.

Recall from our discussion of configuration graphs that

$$
M(x)=1 \Longleftrightarrow \text { there exists a path from } C_{\text {start }} \text { to } C_{\text {acc }} \text { in } G_{M, x}
$$

Consider the following (informal) game:
Player 1: The goal is to show that there exists a path (of length $2^{O(S(n))}$) from $C_{\text {start }}$ to $C_{\text {acc }}$.
Player 2: The goal is to show that there is no such path.
When it's Player 1's turn to move, they'll pick a vertex v that's on the alleged path from $C_{\text {start }}$ to $C_{\text {acc }}$.
When it's Player 2's turn, they'll issue a "challenge" to recurse either to the left or right of v, i.e., to force Player 1 in the next round to either exhibit a vertex on the path from $C_{\text {start }}$ to v or from v to $C_{\text {acc }}$ And so on and so forth...

The point of this game is that Player 1 has a winning strategy iff there indeed exists a path from $C_{\text {start }}$ to $C_{\text {acc }}$ in $G_{M, x}$.

Now let's turn this intuitive description of a game into a QBF. Let $m=O(S(n)$) be the number of bits needed to encode one configuration (vertex of the configuration graph). The idea will be to recursively construct formulas of the form $\Psi_{i}\left(C, C^{\prime}\right)$, for $C, C^{\prime} \in\{0,1\}^{m}$, such that

$$
\Psi_{i}\left(C, C^{\prime}\right) \in \mathrm{TQBF} \Longleftrightarrow \exists \text { a path of length } \leq 2^{i} \text { from } C \text { to } C^{\prime} .
$$

The final formula we want will be $\Psi_{m}\left(C_{\text {start }}, C_{\text {acc }}\right)$.
Base case: If $i=0$, we use the proof of the Cook-Levin Theorem to encode the question of whether there is a transition from C to C^{\prime} as an unquantified formula $\Psi_{0}\left(C, C^{\prime}\right)$.

Recursive case: As a first attempt, we might want to define $\Psi_{i}\left(C, C^{\prime}\right)=\exists v \Psi_{i-1}(C, v) \wedge \psi_{i-1}\left(v, C^{\prime}\right)$. The problem with this is that the size of the formula doubles with each call, so we'd end up with an exponentially long formula.

A better idea is introduce auxiliary variables to capture an equivalent condition without blowing up the formula size. One way to do this is to define

$$
\Psi_{i}\left(C, C^{\prime}\right)=\exists v \forall x, y \quad(x=C \wedge y=v) \vee\left(x=v \wedge y=C^{\prime}\right) \Longrightarrow \Psi_{i-1}(x, y) .
$$

Note that one can unpack the \Longrightarrow connective using ORs and negations, and "push all quantifiers" in Ψ_{i-1} to the left of the whole expression.

The time it takes to generate each formula is polynomial in the size, which by induction, is at most $\left|\Psi_{i}\right| \leq O\left(m^{2}\right)$.

