#### CAS CS 535: Complexity Theory

Lecturer: Mark Bun

Fall 2023

### **Lecture Notes 9:**

## Immerman-Szelepcsényi Theorem, Polynomial Hierarchy

Reading.

• Arora-Barak § 4.3, 5.1-5.2

Last time: Logspace Computation Recall our canonical NL-complete problem

 $\mathsf{PATH} = \{ \langle G, s, t \rangle \mid \text{ Digraph } G \text{ has a path from } s \text{ to } t \}$ 

and the certificate-verifier view of the complexity class  $NL = NSPACE(\log n)$ .

**Theorem 1.** A language  $A \in \mathbf{NL}$  if and only if there exists a logspace TM V with a <u>read-once</u> "certificate tape" and a polynomial p such that for all  $x \in \{0, 1\}^*$ ,

 $x \in A \iff \exists u \in \{0, 1\}^{p(|x|)} \quad M(x, u) = 1.$ 

*Here, x is given to M on its input tape while u is given on its certificate tape.* 

# 1 Immerman-Szelepcsényi Theorem: NL = coNL

Today, we'll prove a remarkable result about logspace computation, which one can view as the spacebounded analog of NP = coNP.

Theorem 2. NL = coNL.

The way we'll prove this is by showing that the **coNL**-complete problem  $\overrightarrow{PATH}$  is also contained in **NL**. Pause for a moment to think about how remarkable that is. While it's straightforward to check the existence of a path with a logspace verifier, this is saying that there's a similarly efficient way to certify the *non*-existence of such a path.

Here's the intuition for the proof. Say I want to convince you that in a digraph G with n vertices, there is no path from s to t. I can do this by convincing you of the following two statements:

1. There are exactly  $m_n$  distinct vertices reachable from s by paths of length  $\leq n$ .

2. The destination vertex t is *not* one of those  $m_n$  vertices.

Now how would I actually convince you of these statements? Let's start with the second one. I can do that by showing you  $m_n$  vertices *other* than t which are reachable from s by paths of length  $\leq n$ . Now how about the first one? The idea we'll use for this one is "inductive counting." For each k = 0, ..., n - 1, I'll show you that "if there are  $m_k$  vertices reachable by paths of length  $\leq k$ , then there are  $m_{k+1}$  vertices reachable by paths of length  $\leq k + 1$ ." *Proof.* Let G be a graph with n vertices. For each i = 0, ..., n, let  $C_i$  be the set of vertices reachable from s within  $\leq i$  steps. Then

$$\langle G, s, t \rangle \in \overline{\mathsf{PATH}} \iff t \notin C_n \iff \exists m_0, \dots, m_n \text{ s.t. } \begin{cases} |C_0| = m_0(=1) \\ \text{If } |C_0| = m_0 \text{ then } |C_1| = m_1 \\ \vdots \\ \text{If } |C_{n-1}| = m_{n-1} \text{ then } |C_n| = m_n \\ \text{If } |C_n| = m_n \text{ then } t \notin C_n. \end{cases}$$

That is, certifying all of the statements on the right is equivalent to certifying the statement on the left. Let us now see how to describe and verify these certificates.

- 1.  $|C_0| = m_0$ . This one is easy. Since  $|C_0| = \{s\}$ , the only possibility is to take  $m_0 = 1$  which the verifier can immediately check.
- 2.  $|C_n| = m_n \implies t \notin C_n$ . Define  $u_v$  to be a certificate for the fact that there is a path from s to v of length  $\leq n$  (i.e., the list of vertices along this path). Take the certificate to be  $(u_{v_1}, u_{v_2}, \ldots, u_{v_{m_n}})$  where the vertices are sorted so that  $v_j < v_{j+1}$  and  $t \neq v_j$  for every j.

To check this certificate, scan it once while checking that a) the vertices are indeed sorted, b)  $m_n$  distinct vertices are hit, c) t does not appear in the list, and d) the individual path certificates all check out.

3.  $|C_k| = m_k \implies |C_{k+1}| = m_{k+1}$ . Here, the certificate will take the form  $(w_1, w_2, \ldots, w_n)$  where each  $w_i$  itself is a certificate for either " $v_i \in C_{k+1}$ " or "If  $|C_k| = m_k$ , then  $v_i \notin C_{k+1}$ ." This suffices because the verifier can count to ensure there are exactly  $m_{k+1}$  " $\in C_{k+1}$ " certificates while verifying each individual certificate.

Now let's see what these individual certificates look like.

- (a) To certify  $v_i \in C_{k+1}$ : Just exhibit a path from s to  $v_i$  of length  $\leq k + 1$ .
- (b) To certify "If  $|C_k| = m_k$ , then  $v_i \notin C_{k+1}$ ": Similar to Case 2, let  $u_v$  be a certificate for the fact that there is a path from s to v of length  $\leq k$ . Our certificate is now  $(u_{v_1}, \ldots, u_{v_{m_k}})$ , where again the vertices are sorted so that every  $v_j < v_{j+1}$ . Checking this certificate is similar, but now we check that for every target vertex  $v_j$  in this list, there is no edge  $v_j \rightarrow v_i$ .



## 2 Polynomial Hierarchy

So far, our zoo of major complexity classes looks like

$$\mathbf{L} \subseteq \mathbf{N}\mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{N}\mathbf{P} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXP} \subseteq \mathbf{NEXP}$$

Today, we'll peer into the space between NP and PSPACE guided by (at least) two motivations:

- 1. The complexity of some problems seems to lie strictly between NP and PSPACE. Can we classify these problems?
- 2. What exactly are we capable of solving if  $\mathbf{P} = \mathbf{NP}$ ?

Let's start with an example.

**Example 3.** Given a DNF formula  $\varphi$ , is there a "small" DNF  $\psi$  computing the same function?

$$\begin{aligned} \mathsf{SMALL}\text{-}\mathsf{EQ}\text{-}\mathsf{DNF} &= \{ \langle \varphi, k \rangle \mid \exists \text{ a DNF } \psi \text{ of size } \leq k \text{ s.t. } \psi \equiv \varphi \} \\ &= \{ \langle \varphi, k \rangle \mid \exists \text{ a DNF } \psi \text{ of size } \leq k \text{ s.t. } \forall x, \psi(x) = \varphi(x) \}. \end{aligned}$$

So what's interesting about this problem?

- 1. It seems harder than NP problems. The "obvious" certificate  $\psi$  looks like it needs exponential time to check (i.e., testing all possible assignments x).
- 2. Nevertheless, if  $\mathbf{P} = \mathbf{NP}$ , we can solve this problem efficiently. To see this, define the auxiliary language

$$\mathsf{EQ}\mathsf{-}\mathsf{DNF} = \{ \langle \varphi, \psi \rangle \mid \forall x, \psi(x) = \varphi(x) \}.$$

If P = NP, then P = coNP, so EQ-DNF  $\in P$ . But now this implies that SMALL-EQ-DNF  $\in NP = P!$  This is because we can write

SMALL-EQ-DNF = { $\langle \varphi, k \rangle \mid \exists$  a DNF  $\psi$  of size  $\leq k$  s.t.  $\langle \varphi, \psi \rangle \in \mathsf{EQ-DNF}$ }.

So we can take  $\psi$  as a certificate and verify it in poly-time.

So again, our goal is to study problems like this in a more systematic way. To do so, we'll start by defining some operations that allow us to build new complexity classes from old.

Definition 4. Let C be complexity class. Define

- $\exists \mathbf{C}: \text{ A language } L \in \exists \mathbf{C} \text{ if there exists a language } R \in \mathbf{C} \text{ and a polynomial } p \text{ such that } x \in L \iff \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,u) \in R.$
- $\forall \mathbf{C}$ : A language  $L \in \forall \mathbf{C}$  if there exists a language  $R \in \mathbf{C}$  and a polynomial p such that  $x \in L \iff \forall u \in \{0,1\}^{p(|x|)}$  s.t.  $(x,u) \in R$ .

**Example 5.**  $\exists \mathbf{P} = \mathbf{NP}$ . What about  $\forall \mathbf{P}$ ?  $\exists \exists \mathbf{P}$ ?  $\exists \forall \mathbf{P}$ ?

**Definition 6.** Define the classes  $\Sigma_2^p = \exists \forall P, \Sigma_3^p = \exists \forall \exists P, \Sigma_4^p = \exists \forall \exists \forall P, \dots$  In general,

$$\Sigma_{i}^{\mathbf{p}} = \exists \forall \exists \dots Q_{i} \mathbf{P}$$

where  $Q_i = \exists$  if *i* is odd and  $Q_i = \forall$  if *i* is even. Similarly, define

$$\mathbf{\Pi_{i}^{p}} = \forall \exists \forall \dots Q_{i} \mathbf{P}$$

where  $Q_i = \forall$  if *i* is odd and  $Q_i = \exists$  if *i* is even.

Here are some basic observations about these classes:

- $\Sigma_1^{\mathbf{p}} = \mathbf{NP}.$
- $\Pi_1^p = coNP.$
- For every *i*, we have  $\Sigma_{i}^{p}, \Pi_{i}^{p} \subseteq \Sigma_{i+1}^{p} \cap \Pi_{i+1}^{p}$ .



Definition 7. The polynomial hierarchy is defined as

$$\mathbf{P}\mathbf{H} = \bigcup_{i=1}^{\infty} \boldsymbol{\Sigma}_{i}^{\mathbf{p}} = \bigcup_{i=1}^{\infty} \boldsymbol{\Pi}_{i}^{\mathbf{p}}$$

**Theorem 8.** If  $\mathbf{P} = \mathbf{NP}$ , then  $\mathbf{PH} = \mathbf{P}$ .

*Proof idea.* It suffices to show that if  $\mathbf{P} = \mathbf{NP}$ , then  $\Sigma_i^{\mathbf{p}} \in \mathbf{P}$  for every *i*. We immediately have  $\Sigma_1^{\mathbf{p}} = \mathbf{NP} = \mathbf{P}$ , and therefore also that  $\mathbf{coNP} = \mathbf{P}$ . Now observe that  $\Sigma_2^{\mathbf{p}} = \exists \forall \mathbf{P} = \exists \mathbf{coNP} = \exists \mathbf{P} = \mathbf{NP} = \mathbf{P}$ . And so on, by induction.

**Theorem 9.** If  $\Sigma_{i}^{p} = \Pi_{i}^{p}$ , then  $PH = \Sigma_{i}^{p}$ . (If this happens, we say "PH collapses to the i'th level.") Proof.  $\Sigma_{i+1}^{p} = \exists \Pi_{i}^{p} = \exists \Sigma_{i}^{p} = \Sigma_{i}^{p}$  and so on.

A widely believed conjecture (generalizing  $\mathbf{P} \neq \mathbf{NP}$ ) is that the polynomial hierarchy does not collapse. Some more observations:

- 1.  $\Sigma_{\mathbf{i}}^{\mathbf{p}}$  is closed under poly-time reductions  $\leq_p$ : That is, if  $A \leq_p B$  and  $B \in \Sigma_{\mathbf{i}}^{\mathbf{p}}$ , then  $A \in \Sigma_{\mathbf{i}}^{\mathbf{p}}$ .
- 2.  $\Sigma_{i}^{p}$  has complete problems. For example,

$$\Sigma_i \text{-}\mathsf{SAT} = \{ \mathsf{TQBFs of the form } \exists x^{(1)} \forall x^{(2)} \dots \varphi(x^{(1)}, x^{(2)}, \dots, x^{(i)}) \},\$$

where each  $x^{(j)}$  denotes a block of variables, is  $\Sigma_{i}^{p}$ -complete.

A natural question you might ask is: Does **PH** itself have complete problems? The answer is "probably not."

**Theorem 10.** If **PH** has a complete problem, then **PH** collapses.

*Proof.* Suppose L is **PH**-complete. Then  $L \in \Sigma_i^p$  for some level *i*. On the other hand, for every language  $A \in \mathbf{PH}$ , we have  $A \leq_p L$ , so  $A \in \Sigma_i^p$ . Hence  $\mathbf{PH} \subseteq \Sigma_i^p$ .  $\Box$