
CAS CS 535: Complexity Theory

Lecturer: Mark Bun Fall 2023

Lecture Notes 9:

Immerman-Szelepcsényi Theorem, Polynomial Hierarchy

Reading.

• Arora-Barak § 4.3, 5.1-5.2

Last time: Logspace Computation
Recall our canonical NL-complete problem

PATH = {⟨G, s, t⟩ | Digraph G has a path from s to t}

and the certificate-verifier view of the complexity class NL = NSPACE(log n).

Theorem 1. A language A ∈ NL if and only if there exists a logspace TM V with a read-once “certificate
tape” and a polynomial p such that for all x ∈ {0, 1}∗,

x ∈ A ⇐⇒ ∃u ∈ {0, 1}p(|x|) M(x, u) = 1.

Here, x is given to M on its input tape while u is given on its certificate tape.

1 Immerman-Szelepcsényi Theorem: NL = coNL

Today, we’ll prove a remarkable result about logspace computation, which one can view as the space-
bounded analog of NP = coNP.

Theorem 2. NL = coNL.

The way we’ll prove this is by showing that the coNL-complete problem PATH is also contained in
NL. Pause for a moment to think about how remarkable that is. While it’s straightforward to check the
existence of a path with a logspace verifier, this is saying that there’s a similarly efficient way to certify the
non-existence of such a path.

Here’s the intuition for the proof. Say I want to convince you that in a digraph G with n vertices, there
is no path from s to t. I can do this by convincing you of the following two statements:

1. There are exactly mn distinct vertices reachable from s by paths of length ≤ n.

2. The destination vertex t is not one of those mn vertices.

Now how would I actually convince you of these statements? Let’s start with the second one. I can do that
by showing you mn vertices other than t which are reachable from s by paths of length ≤ n. Now how
about the first one? The idea we’ll use for this one is “inductive counting.” For each k = 0, . . . , n − 1,
I’ll show you that “if there are mk vertices reachable by paths of length ≤ k, then there are mk+1 vertices
reachable by paths of length ≤ k + 1.”

1

Proof. Let G be a graph with n vertices. For each i = 0, . . . , n, let Ci be the set of vertices reachable from
s within ≤ i steps. Then

⟨G, s, t⟩ ∈ PATH ⇐⇒ t ̸∈ Cn ⇐⇒ ∃m0, . . . ,mn s.t.

|C0| = m0(= 1)

If |C0| = m0 then |C1| = m1

...
If |Cn−1| = mn−1 then |Cn| = mn

If |Cn| = mn then t /∈ Cn.

That is, certifying all of the statements on the right is equivalent to certifying the statement on the left. Let
us now see how to describe and verify these certificates.

1. |C0| = m0. This one is easy. Since |C0| = {s}, the only possibility is to take m0 = 1 which the
verifier can immediately check.

2. |Cn| = mn =⇒ t /∈ Cn. Define uv to be a certificate for the fact that there is a path from s to v
of length ≤ n (i.e., the list of vertices along this path). Take the certificate to be (uv1 , uv2 , . . . , uvmn

)
where the vertices are sorted so that vj < vj+1 and t ̸= vj for every j.

To check this certificate, scan it once while checking that a) the vertices are indeed sorted, b) mn

distinct vertices are hit, c) t does not appear in the list, and d) the individual path certificates all check
out.

3. |Ck| = mk =⇒ |Ck+1| = mk+1. Here, the certificate will take the form (w1, w2, . . . , wn) where
each wi itself is a certificate for either “vi ∈ Ck+1” or “If |Ck| = mk, then vi /∈ Ck+1.” This suffices
because the verifier can count to ensure there are exactly mk+1 “∈ Ck+1” certificates while verifying
each individual certificate.

Now let’s see what these individual certificates look like.

(a) To certify vi ∈ Ck+1: Just exhibit a path from s to vi of length ≤ k + 1.

(b) To certify “If |Ck| = mk, then vi /∈ Ck+1”: Similar to Case 2, let uv be a certificate for the
fact that there is a path from s to v of length ≤ k. Our certificate is now (uv1 , . . . , uvmk

), where
again the vertices are sorted so that every vj < vj+1. Checking this certificate is similar, but
now we check that for every target vertex vj in this list, there is no edge vj → vi.

2

𝐺𝐺, 𝑠𝑠, 𝑡𝑡 ∈ PATH

𝐶𝐶0 = 𝑚𝑚0 = 1 If 𝐶𝐶0 = 𝑚𝑚0,
then 𝐶𝐶1 = 𝑚𝑚1

If 𝐶𝐶𝑛𝑛−1 = 𝑚𝑚𝑛𝑛−1,
then 𝐶𝐶𝑛𝑛 = 𝑚𝑚𝑛𝑛

If 𝐶𝐶𝑛𝑛 = 𝑚𝑚𝑛𝑛,
then 𝑡𝑡 ∉ 𝐶𝐶𝑛𝑛

For all vertices 𝑣𝑣:
𝑣𝑣 ∈ 𝐶𝐶𝑛𝑛

(A path of length 𝑛𝑛 from 𝑠𝑠 to 𝑣𝑣)

If 𝐶𝐶𝑛𝑛−1 = 𝑚𝑚𝑛𝑛−1,
then 𝑣𝑣 ∉ 𝐶𝐶𝑛𝑛

𝑢𝑢 ∈ 𝐶𝐶𝑛𝑛−1

𝑣𝑣 ∈ 𝐶𝐶𝑛𝑛

…
𝑚𝑚𝑛𝑛 of these (one
for every 𝑣𝑣 ∈ 𝐶𝐶𝑛𝑛) 𝑛𝑛 −𝑚𝑚𝑛𝑛 of these (one

for every 𝑣𝑣 ∉ 𝐶𝐶𝑛𝑛)

𝑚𝑚𝑛𝑛−1 of these (one
for every 𝑢𝑢 ∈ 𝐶𝐶𝑛𝑛−1)

Check that 𝑢𝑢 ≠ 𝑣𝑣 and 𝑢𝑢 → 𝑣𝑣

𝑚𝑚𝑛𝑛 of these (one
for every 𝑣𝑣 ∈ 𝐶𝐶𝑛𝑛)

Check that 𝑣𝑣 ≠ 𝑡𝑡

2 Polynomial Hierarchy

So far, our zoo of major complexity classes looks like

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

Today, we’ll peer into the space between NP and PSPACE guided by (at least) two motivations:

1. The complexity of some problems seems to lie strictly between NP and PSPACE. Can we classify
these problems?

2. What exactly are we capable of solving if P = NP?

Let’s start with an example.

Example 3. Given a DNF formula φ, is there a “small” DNF ψ computing the same function?

SMALL-EQ-DNF = {⟨φ, k⟩ | ∃ a DNF ψ of size ≤ k s.t. ψ ≡ φ}
= {⟨φ, k⟩ | ∃ a DNF ψ of size ≤ k s.t. ∀x, ψ(x) = φ(x)}.

So what’s interesting about this problem?

1. It seems harder than NP problems. The “obvious” certificate ψ looks like it needs exponential time
to check (i.e., testing all possible assignments x).

2. Nevertheless, if P = NP, we can solve this problem efficiently. To see this, define the auxiliary
language

EQ-DNF = {⟨φ,ψ⟩ | ∀x, ψ(x) = φ(x)}.

3

If P = NP, then P = coNP, so EQ-DNF ∈ P. But now this implies that SMALL-EQ-DNF ∈
NP = P! This is because we can write

SMALL-EQ-DNF = {⟨φ, k⟩ | ∃ a DNF ψ of size ≤ k s.t. ⟨φ,ψ⟩ ∈ EQ-DNF}.

So we can take ψ as a certificate and verify it in poly-time.

So again, our goal is to study problems like this in a more systematic way. To do so, we’ll start by
defining some operations that allow us to build new complexity classes from old.

Definition 4. Let C be complexity class. Define

∃C: A language L ∈ ∃C if there exists a language R ∈ C and a polynomial p such that x ∈ L ⇐⇒ ∃u ∈
{0, 1}p(|x|) s.t. (x, u) ∈ R.

∀C: A language L ∈ ∀C if there exists a language R ∈ C and a polynomial p such that x ∈ L ⇐⇒ ∀u ∈
{0, 1}p(|x|) s.t. (x, u) ∈ R.

Example 5. ∃P = NP. What about ∀P? ∃∃P? ∃∀P?

Definition 6. Define the classes Σp
2 = ∃∀P,Σp

3 = ∃∀∃P,Σp
4 = ∃∀∃∀P, In general,

Σp
i = ∃∀∃ . . . QiP

where Qi = ∃ if i is odd and Qi = ∀ if i is even.
Similarly, define

Πp
i = ∀∃∀ . . . QiP

where Qi = ∀ if i is odd and Qi = ∃ if i is even.

Here are some basic observations about these classes:

• Σp
1 = NP.

• Πp
1 = coNP.

• For every i, we have Σp
i ,Π

p
i ⊆ Σp

i+1 ∩Πp
i+1.

𝐏𝐏

𝐍𝐍𝐏𝐏 = 𝚺𝚺 1
𝑝𝑝

𝐜𝐜𝐜𝐜𝐍𝐍𝐏𝐏 = Π 1
𝑝𝑝 Π 2

𝑝𝑝 Π 3
𝑝𝑝

𝚺𝚺 2
𝑝𝑝 𝚺𝚺 3

𝑝𝑝

…

means ⊆

4

Definition 7. The polynomial hierarchy is defined as

PH =

∞⋃
i=1

Σp
i =

∞⋃
i=1

Πp
i

Theorem 8. If P = NP, then PH = P.

Proof idea. It suffices to show that if P = NP, then Σp
i ∈ P for every i. We immediately have Σp

1 =
NP = P, and therefore also that coNP = P. Now observe that Σp

2 = ∃∀P = ∃coNP = ∃P = NP =
P. And so on, by induction.

Theorem 9. If Σp
i = Πp

i , then PH = Σp
i . (If this happens, we say “PH collapses to the i’th level.”)

Proof. Σp
i+1 = ∃Πp

i = ∃Σp
i = Σp

i and so on.

A widely believed conjecture (generalizing P ̸= NP) is that the polynomial hierarchy does not collapse.
Some more observations:

1. Σp
i is closed under poly-time reductions ≤p: That is, if A ≤p B and B ∈ Σp

i , then A ∈ Σp
i .

2. Σp
i has complete problems. For example,

Σi-SAT = {TQBFs of the form ∃x(1)∀x(2) . . . φ(x(1), x(2), . . . , x(i))},

where each x(j) denotes a block of variables, is Σp
i -complete.

A natural question you might ask is: Does PH itself have complete problems? The answer is “probably
not.”

Theorem 10. If PH has a complete problem, then PH collapses.

Proof. Suppose L is PH-complete. Then L ∈ Σp
i for some level i. On the other hand, for every language

A ∈ PH, we have A ≤p L, so A ∈ Σp
i . Hence PH ⊆ Σp

i .

5

	Immerman-Szelepcsényi Theorem: NL= coNL
	Polynomial Hierarchy

