
CS 591 B1: Communication Complexity, Fall 2019

Problem Set 2
Due: 5:00PM, Friday, October 25, 2019.

Homework Policies:

• Submit your completed assignment by email to mbun[at]bu[dot]edu. Please include
the string “CS591PS2” somewhere in your subject line.

• Solutions must be typeset, e.g., using LATEX or Microsoft Word.

• To help your instructor calibrate the length and difficulty of future assignments, please
include with each problem an estimate of how long it took you to solve it.

• You are encouraged to collaborate on the homework problems with each other in small
groups (2-3 people). Collaboration may include brainstorming or exploring possible
solutions together on a whiteboard, but should not include one person telling the others
how to solve a problem. You must also write up the solutions independently (in your
own words) and acknowledge your collaborators at the beginning of the first page.

• You may freely use without proof any results proved in class, in Mark’s lecture notes
posted on the class webpage, or in the main body of the texts assigned as reading.
Note that this excludes results that appear in the texts as problems and exercises. You
may, of course, use such results but you have to prove them first.

• You may read papers and other outside sources to help you solve these problems. If
you do so, you must acknowledge these sources and write the solutions in your own
words.

• Start early! The problems are presented roughly in the order of the course content
they correspond to, so you may get started on the first few problems as soon as the
assignment is released. Late assignments will receive credit only with prior permission
of the instructor.
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Problem 1 (Zero- and One-Sided Error Communication). Our discussion in class has fo-
cused on randomized communication with two-sided error, but we could make other choices.
For example, we could consider protocols that only make one-sided error. A randomized
protocol Π computes a function f with one-sided error if for every (x, y) with f(x, y) = 0,

Pr[Π(x, y) = 0] = 1

and for every (x, y) with f(x, y) = 1,

Pr[Π(x, y) = 1] ≥ 1

2
.

The RPcc communication cost of a protocol is the length of the shortest public coin protocol
computing f . We can similarly define the coRPcc complexity by exchanging the roles of 0s
and 1s above.

(a) What is the RPcc communication complexity of the Equality function EQn? How about
the coRPcc communication complexity?

(b) We may also define randomized protocols with zero error, but which may with some
probability output ⊥ indicating “I don’t know.” A randomized protocol Π : X × Y →
{0, 1,⊥} computes a function f with zero error if for every (x, y),

Pr[Π(x, y) ∈ {f(x, y),⊥}] = 1

and

Pr[Π(x, y) = ⊥] ≤ 1

4
.

The ZPPcc communication complexity of a protocol is length of the shortest public coin
protocol computing f with zero error.

Show that if f has a fooling set of size s, then ZPPcc(f) ≥ log s−O(1).

(c) Letting RPcc, coRPcc,ZPPcc consist of sequences of functions with polylogarithmic
complexity in each of these models respectively, show that ZPPcc = RPcc ∩ coRPcc.

Problem 2 (Shearer’s Lemma). Shearer’s Lemma is an important tool in information theory
with lots of applications to combinatorics. It states that if X = (X1, . . . , Xn) is a collection
of random variables and A ⊆ [n] is independent from X such that Pr[j ∈ A] ≥ ε for every
j ∈ [n], then

εH(X) ≤ H(XA|A),

where XA = (Xj)j∈A is the subcollection of X of indices in A.

(a) Derive the subadditivity of entropy, i.e., H(X1X2 . . . Xn) ≤ H(X1) + · · ·+ H(Xn), as a
special case of Shearer’s Lemma.
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(b) Here is an application to counting satisfying assignments to boolean functions. Let
f1, . . . , fm : {0, 1}n → {0, 1} be boolean functions, and let F (x) = ∧mi=1fi(x). Suppose
Prx∼U [fi(x) = 1] = p for every i where U is the uniform distribution over {0, 1}n. If the
fi’s depend on disjoint sets of variables, i.e., each fi depends on some subset Si ⊆ [n] of
variables and Si ∩ Sj = ∅ for all i 6= j, then by independence we have

Pr
x∼U

[F (x) = 1] =
m∏
i=1

Pr
x∼U

[fi(x) = 1] = pm.

Prove a similar result when each variable xj is allowed to appear in exactly k of the
subsets Si. Namely, suppose each fi depends only on the variables in Si ⊆ [n] and
#{i ∈ [m] : j ∈ Si} = k for every j ∈ [n]. Show that

Pr
x∼U

[F (x) = 1] ≤ pm/k.

Hint: Apply Shearer’s Lemma with X being uniform over the satisfying assignments to

F .

Problem 3 (Internal vs. External Information). Show that if µ is a product distribution,
i.e., A and B are independent when (A,B) ∼ µ, then ICext

µ (Π) = ICµ(Π) for every protocol
Π.

Problem 4 (Correlated Sampling Revisited). Consider the following correlated sampling
problem. Let π be a distribution over X which decomposes as a product of two functions
p · q. Suppose Alice holds p and Bob holds q, and moreover, that they hold estimates q′ and
p′ of each others’ functions such that

1. p · q′ and p′ · q are valid probability mass functions, i.e., they take values in [0, 1] and
sum to 1 and

2. There is a known parameter M > 0 such that p(x) ≤ Mp′(x) and q(x) ≤ Mq′(x) for
every x ∈ X.

Show that there is a public coin protocol that allows Alice and Bob to agree on a sample
x ∼ π with probability at least 1− ε using communication poly(M, log(1/ε)).

Hint: Interpret the public randomness as a sequence of the form (xi, ai, bi) where the goal
is to discover the first index i for which ai ≤ p(xi) and bi ≤ q(xi).

Problem 5 (Augmented Indexing). Consider the following Augmented Indexing Problem:
Alice is given a string x ∈ {0, 1}n and Bob is given an index i and the prefix x1, . . . , xi−1.
The goal is for Bob to output xi given one-way communication from Alice to Bob with
probability at least 1− δ.
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(a) Prove a lower bound of (1−h(δ))n on the one-way randomized communication complexity
of Augmented Indexing, where h(δ) = δ log(1/δ) + (1 − δ) log(1/(1 − δ)) is the binary
entropy function.

(b) Augmented Indexing is a fairly contrived problem, but it turns out to be useful in
applications. In the strict turnstile streaming model, a pair (it, vt) arrives in every
round t = 1, . . . ,m. The index it represents an element of the universe [n] and vt ∈
{−M,−M + 1, . . . ,M} represents an additive update to the count of how many times
element it has been seen. The strict turnstile model imposes the condition that at every
point in time t, the count of every element is non-negative.

In the Distinct Elements problem, we wish to estimate the number of elements which
have non-zero count at the end of the stream. Show that any randomized strict turnstile
streaming algorithm which, with probability ≥ 0.99, estimates this count to within a
factor of 2 requires space Ω(log n) even for some m = O(n) and M = O(1).

(c) Optional Challenge Problem: Show that any algorithm which estimates this count to
within a factor of (1 + ε) requires space Ω(log(ε2n)/ε2) as long as log(ε2n)/ε2 ≤ n.

Hint: Use a reduction from the Gap-Hamming problem to Indexing. In the Gap-
Hamming problem, Alice and Bob receive x, y ∈ {0, 1}n with the promise that |x− y| ≥
n/2 +

√
n or |x− y| ≤ n/2−

√
n and their goal is to decide which is the case.
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