
CAS CS 591 B: Communication Complexity

Prof. Mark Bun Fall 2019

Lecture Notes 11:

Direct Sum

Reading.

• Rao-Yehudayo� Chapter 7

Does solving k instances of a given computational task require more resources than are required

to solve a single task? Direct sum theorems (as well as related direct product theorems and XOR

lemmas) address this question. The direct sum question is one of the most basic questions one

can ask in any computational model and here we'll see some answers to it in communication and

information complexity.

For a communication problem f : X × Y → {0, 1}, let fk : Xk × Y k → {0, 1}k be the function

fk(x1, . . . , xk, y1, . . . , yk) = (f(x1, y1), . . . , f(xk, yk)). A randomized protocol computes fk to error

ε if for all (x, y) ∈ Xk × Y k we have Pr[Π(x, y) = fk(x, y)] ≥ 1− ε. Note that if we have a protocol

computing f to error ε with communication cost c, then we can compute fk to error (1− ε)k with

communication cost k · c.

• Note that naïve repetition of a protocol for f both increases the communication cost by a factor

of k and decreases the success probability exponentially in k. (Strong) direct product theorems

identify situations where both an increase in communication and exponential decrease in

success probability are necessary. For instance, a direct product theorem might show that if

c is the communication cost of computing f to error 1/3, then computing fk to error 2−Ω(k)

requires communication Ω(k · c).

• Related to direct product theorems are XOR lemmas which address the task of computing the

boolean function XOR(f(x1, y1), . . . , f(xk, yk)). Intuitively, successfully computing the XOR

of k copies of f should necessitate computing every copy simultaneously. An XOR lemma

might say that computing XORk ◦ f to error 1/2 + 2−Ω(k) requires communication Ω(k · c).

• Direct sum theorems are weaker than direct product theorems, and ask whether computing

fk requires more resources than computing f itself for some �xed success probability ε. A

direct sum theorem may say that computing fk to error 1/3 requires communication Ω(k · c).

1 Additivity of Information Cost

Information cost behaves elegantly with respect to k-fold composition.

Theorem 1. Let f be any communication problem and let µ be a distribution over the domain of

f . Then for every ε > 0,
ICεµ,k(f

k) = k · ICεµ(f).

1

Here, the notation ICεµ,k(f
k) refers to the least information cost of a protocol computing fk

which has success probability 1− ε on each individual copy.

Proof. Fix ε > 0. The direction ICµ,k(f
k) ≤ k · ICµ(f) is obvious since we can just run a protocol

Π computing f on each copy independently. For the other direction, let Π be a protocol computing

fk. We will use it to construct a protocol Π′ computing f with information cost ICµ,k(Π)/k.
The protocol is as follows. On inputs (x, y), Alice and Bob use public randomness to sample an

index i∗ ∈ [n] and set ai∗ = x and bi∗ = y. They also publicly sample a1, . . . , ai∗−1 ∼ µx and

bi∗+1, . . . , bn ∼ µy i.i.d. Then for i > i∗, Alice privately samples ai ∼ µx|y = bi and for i < i∗, Bob
privately samples bi ∼ µy|y = ai. The parties then execute the protocol Π(a, b) and output the

value computed in the i∗-th coordinate.

We now argue that Π′ has low internal information cost. We calculate

I(y; Π′|x) ≤ I(y; Π′, a|x)

= I(y; Π, i∗, a, bi∗+1, . . . , bn|x)

= I(y; i∗, a, bi∗+1, . . . , bn|x) + I(y; Π|i∗, a, bi∗+1, . . . , bn)

= I(y; Π|i∗, a, bi∗+1, . . . , bn)

=
1

k

k∑
i=1

I(bi∗ ; Π|a, bi+1, . . . , bn, i = i∗)

=
1

k

k∑
i=1

I(bi; Π|a, bi+1, . . . , bn)

=
1

k
I(b; Π|a)

by the chain rule.

2 Direct Sum for Randomized Communication

Theorem 2. If BPPcc(f) = c, then BPPcc(fk) ≥ Ω(c
√
k/ log c).

To prove this theorem, we need a di�erent compression result due to Braverman, Barak, Chen,

and Rao:

Theorem 3. A protocol with communication cost c and information cost I can be compressed to a

protocol with communication cost

O(
√
Ic log(c/ε)/ε)

with error ε.

Proof of Theorem 2. By Yao's principle, there is a distribution µ such that D
1/3
µ (f) ≥ c. Suppose

Π is a protocol computing fk with success probability 3/4 and length `. Then there exists a �xing

of the randomness r in Π such that Πr computes fk with success probability 3/4 over inputs drawn

from µ⊗k. Now let Π′ be the protocol used in the proof of Theorem 1. Then Π′ computes f over µ
with success probability at least 3/4 and has internal information cost

ICµ(Π′) =
1

k
ICµ⊗k(Πr) ≤

`

k
.

2

Compressing Π′ according to Theorem 5 gives a protocol Π′′ with communication

O

(√
`

k
· ` · log `

)
= O(` log `/

√
k)

and error less than 1/3. Hence ` log `/
√
k ≥ Ω(c), so ` ≥ Ω(c

√
k/ log c).

3 Information Equals Amortized Communication

Theorem 4. For every ε > 0,

ICεµ(f) = lim
k→∞

1

k
·Dε

µ,k(f
k)

where Dε
µ,k(f

k) denotes the least cost of a deterministic protocol computing fk over µ⊗k with success

probability at least 1− ε on every copy.

To prove this theorem, we recall Braverman and Rao's compression for interactive protocols:

Theorem 5. Let Π be a private coin protocol with r rounds and internal information cost I. Then

there is a public coin protocol τ such that with probability at least 1− ε,

• τ(x, y) (can be used to reconstruct a transcript which) has the same distribution as Π(x, y) for

every x, y and

• The expected communication of τ is I +O(r log(r/ε) +
√
Ir).

Proof sketch. From Theorem 1 we have

1

k
·Dε

µ,k(f
k) ≥ 1

k
· ICεµ⊗k(fk) = ICεµ(f).

We now prove the other direction. Let δ > 0 and let Π be a protocol computing f to error ε− δ in r
rounds. Let Πk denote this protocol applied to k copies of f independently. Note that the number

of rounds of Πk is still r (since we can batch calls to Π together) and that

ICµ⊗k(Πk) = k · ICµ(Π).

Now we compress Πk to another protocol Π′ which uses expected communication

k · ICµ(Π) +O(r log(r/δ)) +
√
k · r · ICµ(Π)

and additional error δ. Moreover, the communication cost of Π′ concentrates around its expectation,

so we can obtain a similar bound on its worst case communication. Sending k → ∞ and δ → 0
gives the result.

3

