
CAS CS 591 B: Communication Complexity

Prof. Mark Bun Fall 2019

Lecture Notes 13:

Unbounded error communication

Reading.

• Paturi-Simon, �Probabilistic Communication Complexity�

We'll begin studying a very strong model of probabilistic communication complexity called

the �unbounded error model.� In this model we are interested in computing a function with any

advantage over random guessing. It will be convenient for us to change the range of our Boolean

functions to {−1, 1} instead of {0, 1}.

De�nition 1. The unbounded error communication complexity of a function f : X×Y → {−1, 1},
denoted UPPcc(f), is the minimum length of a private coin protocol Π such that for every (x, y)

Pr[Π(x, y) = f(x, y)] > 1/2⇐⇒ sgnE[Π(x, y)] = f(x, y).

This de�nition should be compared with that of the PPcc model which we de�ned earlier when

discussing discrepancy. Recall that the PPcc cost of a protocol charges for both its length and for

log(1/δ), where δ is its advantage over random guessing on a worst-case input. One way to think

about this additional charge of log(1/δ) is as a proxy for charging for the amount of randomness

used in the protocol. Moreover, by Newman's theorem, the de�nition of PPcc changes by only

additive log terms depending on whether we allow public randomness. The UPPcc model, on the

other hand, is only interesting in the absence of public randomness. If we were to permit the use

of public randomness, then every function would have an O(1) cost protocol. Alice could just send

a bit indicating whether her string x is equal to the �rst n bits of the public random string. If so,

then Bob can compute f(x, y), and otherwise, he can output a random guess. This protocol has

advantage 2−n.
Even if we only allow for private coins, many functions have e�cient UPPcc protocols.

Example 2. UPPcc(EQn),UPPcc(GTn) = O(1) and UPPcc(GHn),UPPcc(DISJn) = O(log n).

We've seen protocols for the latter two before. The easiest way to see that there are constant

communication protocols for Equality and Greater-Than is by studying equivalent characterizations

of UPPcc.

1 Sign Rank

UPPcc has an extremely clean matrix analytic characterization. Recall the log rank conjecture,

which asserts that deterministic communication complexity of f is characterized up to polynomial

factors by log rankMf . The analog of this conjecture for UPPcc complexity is true in the the

sharpest possible way.
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De�nition 3. The sign rank of a matrix M with entries in {−1, 1}, denoted rank±M , is the

minimum rank of a real-valued matrix R such that sgnR[x, y] = M [x, y] for every (x, y).

Theorem 4. For a function f : X × Y → {−1, 1}, let Sf ∈ R|X|×|Y | be its sign matrix Sf [x, y] =
f(x, y). Then

UPPcc(f) = log rank±(Sf )±O(1).

Proof. We �rst show that log rank±(Sf ) ≤ UPPcc(f) + O(1). Suppose Π is a UPPcc protocol

computing f with communication cost c. De�ne the matrix R[x, y] = E[Π(x, y)]. Then sgnR[x, y] =
Sf [x, y], so we just need to show that rankR ≤ 2c. Write

E[Π(x, y)] =
∑

`:Π outputs 1 at leaf `

Pr[Π(x, y) reaches `]−
∑

`:Π outputs −1 at leaf `

Pr[Π(x, y) reaches `],

and for each such leaf ` de�ne the matrix R`[x, y] = Pr[Π(x, y) reaches `] = p`(x) · q`(y) for some

functions p`, q`, using the fact that Π is a private coin protocol. This implies that every R` is a

rank-1 matrix, and hence

R =
∑

`:Π outputs 1 at leaf `

R` −
∑

`:Π outputs −1 at leaf `

R`

has rank at most 2c.
For the other direction, we want to show that if rank±(Sf ) = r, then we can construct a UPPcc

protocol for f with cost log r + O(1). The condition rank±(Sf ) = r is equivalent to the existence

of vectors {ux ∈ Rr : x ∈ X} and {vy ∈ Rr : y ∈ Y } such that sgn〈ux, vy〉 = f(x, y) for every

x, y. Assume without loss of generality that the vectors are normalized so that every ‖ux‖1 = 1
and ‖vy‖1 = 1. Hence each |(ux)1|, . . . , |(ux)r| represents a probability distribution over [r] (and
similarly for vy). This suggests the following cost log r +O(1) protocol for computing f :

1. Alice samples i ∈ [r] with probability |(ux)i|. She sends i together with a = sgn(ux)i to Bob.

2. Bob samples b ∈ {−1, 1} such that E[b] = (vy)i and outputs ab.

We compute the advantage of this protocol as follows:

E[Π(x, y)] =

r∑
i=1

|(ux)i|E[ab|i]

=

r∑
i=1

(ux)iE[b|i]

=

r∑
i=1

(ux)i(vy)i

= 〈ux, vy〉

whose sign agrees with f(x, y).
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2 Arrangements of Hyperplanes

A hyperplane through the origin in Rd is speci�ed by its normal vector v ∈ Rd and consists of the

points u ∈ Rd such that 〈u, v〉 = 0. It divides Rd into two halfspaces: a �positive� side consisting of

points u with 〈u, v〉 > 0 and a �negative side� where 〈u, v〉 < 0.
A collection of hyperplanes V = {vy ∈ Rd : y ∈ Y } realizes a matrix {−1, 1} ∈ R|X|×|Y | if for

every row vector mx ∈ {−1, 1}|Y | of M there exists a point ux ∈ Rd such that

(mx)y = sgn〈ux, vy〉

for every y ∈ Y . One way to think about what's going on is that a set of hyperplanes divides Rd

into (at most) 2|Y | regions. To each region, we can assign a |Y |-bit string indicating which side

of each hyperplane that region lies in. The collection of hyperplanes realizes M if every row of M
appears as one of these strings.

The sign rank of a matrix M is the minimum dimension d over which there is a collection of

hyperplanes realizing M . In one direction, suppose M has sign rank d. Then there exist vectors

{ux ∈ Rr : x ∈ X} and {vy ∈ Rr : y ∈ Y } such that sgn〈ux, vy〉 = M [x, y]. So we can take the

ux's to be the points and the vy's to the the hyperplanes. Conversely, a collection of hyperplanes

realizing M induces the sets of of vectors required to show that M has sign rank d.
This �geometric� interpretation of sign rank is useful for several reasons. One is that it gives

rise to machine learning algorithms; in fact, the fastest known algorithm for PAC learning DNF is

based on a sign rank upper bound. To see the connection, suppose we have a collection of functions

{fy : X → {−1, 1}} indexed by y ∈ Y . Let (x1, fy∗(x1)), . . . , (xk, fy∗(xk)) be a sequence of labeled

samples from X. We'd like to be able to learn (an approximation to) the function fy∗. If the matrix

M [x, y] = fy(x) has sign rank r, then the problem of �nding fy∗ reduces to the problem of �nding

an r-dimensional hyperplane v which separates the points uxi for which fy∗(xi) < 0 from the points

uxi for which fy∗(xi) > 0. This can be done in poly(r) time using linear programming.

The other reason is that it lets us design the very e�cient communication protocols mentioned

at the beginning of the lecture. For instance, to design an arrangement of hyperplanes realizing

the communication matrix of EQn, we can take the points ux to be evenly spaced along the unit

circle in R2 and the hyperplanes to be �just below� the tangents to the circle at these points. The

dimension of this arrangement is 2, hence the sign rank of the communication matrix is 2 and there

is an O(1)-communication protocol for this problem.

Next time, we'll talk about how to prove strong lower bounds on sign rank and UPPcc com-

munication.
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