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Prof. Mark Bun Fall 2019

Lecture Notes 16 & 17:

Deterministic Lifting

Reading.

• Rao-Yehudayo�, Chapter 8

• Chattopadhyay-Kouchký-Lo�-Mukhopadhyay, Simulation Theorems via Pseudo-random Prop-
erties

We begin a proof of a quite general deterministic lifting theorem. This lifting theorem works
for any gadget g satisfying a certain pseudorandom property which we'll call the h-hitting property.
The hitting property guarantees that there are distributions over the monochromatic rectangles
of g such that any large enough rectangle will intersect a random rectangle from either of these
distributions with high probability.

De�nition 1. A gadget g : X × Y has the h-hitting property if there exist distributions σ0 and
σ1 over the sets of 0-monochromatic rectangles and 1-monochromatic rectangles of g, respectively,
such that for every rectangle A×B with |A|/|X|, |B|/|Y | ≥ 2−h we have

Pr
R∼σc

[R ∩ (A×B) 6= ∅] ≥ 0.99

for c ∈ {0, 1}.

Theorem 2 (CKLM17). Let g : X × Y be a gadget with the h-hitting property and let n ≤ 2h/2.
Then for every f : {0, 1}n → {0, 1},

Ccc(f ◦ gn) ≥ 1

10
· Cdt(f) · h.

Examples of gadgets with the hitting property include

• IPm has the (m/5)-hitting property.

• GHm has the (m/5)-hitting property.

• INDm has the (3 logm/20)-hitting property.

We now begin the proof of Theorem 2. The proof is constructive and uses a communication
protocol Π for f ◦ gn to produce a query algorithm (decision tree) computing f(z). This query
algorithm attempts to simulate the behavior of Π on inputs that are consistent with the queries to
z made so far.

The query algorithm maintains a rectangle A × B ⊆ Xn × Y n. In order for the simulation to
be successful, we maintain several invariants of the rectangle:
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• The rectangle should be consistent with all coordinates of z that have been queries so far.
Namely, for every (x, y) ∈ A×B we have that gi(x, y) = zi for every queried coordinate i.

• A×B is �su�ciently rich� that it is always possible to maintain the consistency requirement
when further coordinates of z are queried. The technical property that captures this is the
notion of �thickness�: The rectangle A×B is thick in coordinate i if for every (x, y) ∈ A×B,
the value of g(xi, yi) can be arbitrary even given the rest of the coordinates x−i, y−i.

Formally, a set A ∈ Xn is τ -thick with respect to S if for every i ∈ S, and all a ∈ AS−i,

dmin(AS , i) := |x ∈ AS : xS−i = a| ≥ τ |X|.

A rectangle A×B is τ -thick if both A and B are τ -thick.

• We also work with a relaxed notion of thickness called �average thickness� which is enough
to guarantee that simulating a step of the protocol is safe. A set A is ϕ-average-thick with
respect to S if for every i ∈ S,

davg(AS , i) :=
|AS |
|AS−i|

≥ ϕ|X|.

One way to think about thickness and average thickness is in terms of a bipartite graph with
left vertices Ai, right vertices AS−i, and edges (ai, aS−i) corresponding to elements in A. Then
dmin is the minimum right-degree of this graph and davg is the average right-degree of this
graph.

The analysis of Algorithm relies on two main lemmas. The �rst lemma says that if the current
rectangle is average-thick, then it can be pruned to restore the thickness invariant while losing only
a constant factor if its density.

Lemma 3 (Pruning). If A ⊆ Xn is ϕ-average-thick, then there is a
(

1
2nϕ

)
-thick subset A′ ⊆ A with

|A′| ≥ |A|/2.

Proof. We repeatedly remove elements x ∈ A which violate the thickness condition. Let τ = 1
2nϕ.

Initialize A′ = A. While there exists an i for which dmin(A′, i) < τ |X|, let a ∈ A′−i such that

|E| := |x ∈ A′ : x−i = a| < τ |X|.

Update A′ = A′ \ E.
The total number of iterations of this process is at most

n∑
i=1

|A−i| =
n∑
i=1

|A|
davg(A, i)

≤ n|A|
ϕ|X|

The algorithm removes at most τ |X| elements in each iteration, so the total number of elements
removed is |A|/2. Hence |A′| ≥ |A|/2.

The second lemma allows us to �nd a useful update of the current rectangle when we query a
coordinate with low average degree. The update satis�es two crucial properties. First, it maintains
the consistency and τ -thickness invariants of the current rectangle. Second, it increases its density.
The second property allows us to argue that the number of query steps over the course of the
algorithm is not too large, since Simulate and Prune steps each decrease density by only a factor of
2, and density cannot be larger than 1.
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Algorithm 1 Decision tree algorithm T (z)

• Set parameters τ = 2−h, ϕ = 4 · 2−h/4

• Initialize A×B = Xn × Y n, S = [n], v = root of the protocol tree

• Until v is a leaf:
If A and B are both ϕ-average-thick w.r.t. S:

1. Simulate the next step of the protocol moving to a new vertex v with consistent rectangle
A×B.
Namely, let u0 and u1 be the children of v in the protocol tree. If it is Alice's turn to
speak, choose c ∈ {0, 1} so that |(Ac)S | ≥ |AS |/2. Set the new rectangle to Ac × B and
v = uc

2. Prune A×B using Lemma 3 to restore τ -thickness.

Else:

1. Query a coordinate i ∈ S for which davg(AS , i) < ϕ|X| or davg(BS , i) < ϕ|X|
2. Use the Projection Lemma 5 to update A×B, set S = S \ {i}

• Output the value at v

De�nition 4. Let A× B be a rectangle and let S ⊂ [n]. The density of A× B with respect to S
is de�ned to be

densS(A×B) :=
|AS | · |BS |
|X||S| · |Y ||S|

.

Lemma 5 (Projection). Let g : X × Y → {0, 1} have the h-hitting property. Suppose A × B is

τ -thick w.r.t. S for τ ≥ 2−h and suppose

davg(AS , i) ≤ ϕ|X|.

Then for c ∈ {0, 1} there exists a subrectangle A′ ×B′ ⊆ A×B such that

1. g(xi, yi) = c for every (x, y) ∈ A′ ×B′

2. A′ ×B′ is τ -thick with respect to S − i

3. densS−i(A
′ ×B′) ≥ 1

2ϕ · densS(A×B).

Proof. For convenience, assume S = [n]. Fix (a, b) ∈ A−i ×B−i. Let

Ua = {xi ∈ X : (xi, a) ∈ A}, Vb = {yi ∈ Y : (yi, b) ∈ B}.

(τ = 2−h)-thickness implies that |Ua|/|X|, |Vb|/|Y | ≥ 2−h. Then by the hitting property of g, there
is a distribution σc over c-monochromatic rectangles of g for which

Pr
R∼σc

[R ∩ (Ua × Vb) 6= ∅] ≥ 0.99.
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Hence there exists a choice of rectangle R such that

|{(a, b) : R ∩ (Ua × Vb) 6= ∅}| ≥ |A−i ×B−i|/2.

Let A′ ×B′ = {(a, b) ∈ A×B : (ai, bi) ∈ R}. Then |A′−i ×B′−i| ≥ |A−i ×B−i|/2.
The rectangle A′ ×B′ so chosen satis�es

dens−i(A
′ ×B′) =

|A′−i| · |B′−i|
|X|n−1 · |Y |n−1

=
9

10
· |A−i|
|X|n−1

· 9

10
· |B−i|
|Y |n−1

≥ 9

10
· |A|/(ϕ|X|)
|X|n−1

· 9

10
· |B|/|Y |
|Y |n−1

≥ 1

2ϕ
· dens(A×B).

Here, the second-to-last inequality follows because davg(A, i) = |A|/|A−i| ≤ ϕ|X|.
Finally, thickness is inherited from thickness of the original rectangles A×B. (Exercise.)

We are now ready to prove Theorem 2. The proof is broken into two claims: One that the
number of queries is small, and one that the protocol is correct.

Claim 6. Let ` be the length of the protocol Π computing f ◦ gn. Then Algorithm makes at most

10`/h queries to z.

Proof. By Lemma 5, every Query step increases densS(A × B) by a factor of 1/2ϕ = 2h/4−2.
Meanwhile, every Simulate and Prune step decreases densS(A×B) by a factor of at most 2. Let q
be the total number of queries. Since density is always at most 1 and the number of Simulate and
Prune steps is at most 2`, we have

(2h/4−2)q · 22` ≤ 1

so q ≤ 2`/(h/4− 2) ≤ 10`/h.

Claim 7. T (z) = f(z) for every z ∈ {0, 1}n.

Proof. Consider the following thought experiment. Augment the original protocol Π to a new
protocol Π′ where Alice and Bob send each other their inputs x, y at the very end. Let A × B
be the rectangle reached at the end of the simulation of Π, and imagine continuing the simulation
of Π′. Then the simulation reaches a rectangle A′ × B′ which is a subrectangle of A × B. Since
the simulation always enforces consistency, zj = g(xj , yj) for all j ∈ [n] and (x, y) ∈ A′ × B′.
Therefore, there must exist some x, y in the original rectangle A×B which is consistent with z, so
Π(x, y) = f(G(x, y)) = f(z).

1 Hitting Distributions

The last ingredient is to exhibit gadgets which satisfy the hitting property. We'll only do this for
the inner product gadget, but see [CKLM17] for the analysis of other gadgets.

Theorem 8. The gadget IPm has the h-hitting property for h = m/4.
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Recall that the goal is to exhibit distributions σ0 and σ1 over the monochromatic rectangles of
IPm which are likely to hit any su�ciently large rectangle. For simplicity, let us only describe the
distribution σ0. (The ideas for σ1 are similar.)

To sample σ0, let V be a random subspace of Fm2 of dimension m/2. Let V ⊥ be its orthogonal
complement, namely V ⊥ = {u ∈ Fm2 : 〈u, v〉 = 0,∀v ∈ V }. Let the sampled rectangle R be V × V ⊥
which by construction is 0-monochoromatic with respect to IPm.

We need to show that R sampled this way is likely to intersect any rectangle A × B with
|A|, |B| ≥ 23m/4. Intuitively, a random subspace V of dimension m/2 looks like 2m/2 random
points. So the expected size of V ∩ A should be |A| · 2−m/2 ≥ 2m/4 and moreover, concentrate
around this with high probability. (And similarly for B.)

Let's do the calculation. Assume 0 /∈ A; otherwise we are done since 0 ∈ V . Let W = |V ∩ A|.
Then we can express W as a sum of indicator random variables W =

∑
x∈AWx where Wx = 1 i�

x ∈ V . For each x ∈ A we have

Pr[Wx = 1] =
2d/2 − 1

2d − 1
.

Moreover, for each x 6= x′ ∈ A,

Pr[Wx = 1 ∧Wx′ = 1] =

(
2d/2−1

2

)(
2d−1
2

) ≤ (2d/2 − 1

2d − 1

)2

.

In other words, the random variables Wx are negatively correlated:

E[WxWx′ ] ≤ E[Wx]E[Wx′ ].

This implies that

Var[W ] = E[W 2]− E[W ]2 ≤ E

[∑
x∈A

W 2
x − E[Wx]2

]
≤ E[W ]

By Chebyshev's inequality (Pr[|X − E[X]| ≥ k
√

Var[X]] ≤ 1/k2),

Pr[A ∩ V = ∅] ≤ Pr[|W − E[W ] ≥ E[W ]]

≤ 1

E[W ]

≤ 2−m/4.

Similarly, we can argue that Pr[B ∩ V ⊥ = ∅] ≤ 2−m/4. Taking a union bound concludes the proof.
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