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Pattern Matrix Method Continued

Reading.
e Sherstov, The Pattern Matrix Method

In this lecture, we’ll prove a version of the Pattern Matrix Method lifting approximate degree
to discrepancy.

Theorem 1. Let F' = fog? where gn, : {—1,1}™ x ([m] x {—1,1}) is given by gm(z, (i,w)) = z;w.
Then for every d > 0,
disc(F) <d+m~ adegy _5(f)/2

Here, we recall the definition of approximate degree and its dual characterization.

Definition 2. Let € > 0 and let f : {—1,1}" — {—1,1}. A real polynomial p : {-1,1}" — R
g-approximates f if [p(xz) — f(x)| < e for all z € {—1,1}". The e-approximate degree of f is the
least degree of a polynomial p which approximates f, and is denoted adeg.(f).

Theorem 3. Let f: {—1,1}" — {—1,1} be a boolean function. Then adeg.(f) > d if and only if
there exists a function ¢ : {—1,1}" — R such that

1. <fa ¢> = er{_Ll}n f(fl:)w(l') > €
2. Wl = Soeq 10 [0(a)] = 1

3. h(S) =27 > zef—11y V(@)xs(@) = 0 for every S C [n] with |S| < d. Here xs(x) = [[;cg 2i-

1 Pattern Matrix Method Proof

It will be convenient to define the notion of a “Pattern Matrix” of a function ¢ : {—1,1}" — R. In
the special case where 1) is boolean, this is simply the communication matrix of 9 o g/, but the
definition of course also makes sense when 1 is real-valued.

Definition 4. The m-Pattern Matrix of a function ¢ : {—1,1}" — R is the 2" x (2m)" real matrix
PM,,,(¢) given by

PMu (21, ..., 2p), ((i1,w1), ... (in, wn))] = P(g(z1, (i1, w1)), ..., g(Tn, (in, wp)))
=Y (z(1 & w)

where I = (i1,...,1,) and the notation z|; indicates the projection of = to the coordinates specified
by I, i.e., (33171-1, . ,xmn).



Every formulation of the Pattern Matrix Method makes use of the following lemma which relates
the spectral norm of a pattern matrix to the Fourier coefficients of the underlying function.

Lemma 5. Let ¢ : {—1,1}" — R and let ¥ = PM,,(¢) be its pattern matriz. Then the spectral
norm of W is given by

- nm n . ] .m—151/2
) = /2 m) - ma ([(S)] - m~12)

Let us see how to use Lemma 5 to prove Theorem 1.

Proof of Theorem 1. Recall from our discussion of discrepancy that for any function F': X x Y —
{-1,1} we have
1l

VIXIYT

(Here, for convenience, we will conflate a two-party function with its sign matrix.) The proof of this
actually gives an upper bound on the discrepancy of F' with respect to the uniform distribution. It
can be generalized as follows. Let P be any matrix with non-negative entries which sum to 1. Then

disc(F) < ||F o P| - /| X||Y]

where F'o P is the matrix obtained by taking the entrywise product of F' and P. This upper bound
on discrepancy follows from the calculation

disc(F) <

discp(F) = max ZZP&:y [z, y]
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= [[P o FllVIXI[[Y].

Now suppose f : {—1,1}" — {—1,1} is such that deg;_5(f) > d. Let ¥ be the 2" x (2m)"
Pattern Matrix of 27" .m~"-4. Then we have |¥|; =1 and (¥, Sp) > 1 — ¢ by Theorem 3. Now
we calculate | ¥||. First observe that for every S C [n],

Z¢

Using the fact that ¢(S) = 0 for all |S] < d, we have by Lemma 5 that

H\I,” < \/’ (2 nm | ) . 2—nm—d/2 _ S_I/Qm_d/Q.

[(S)| =27" )| <277l =27

where s = 2™ . (2m)™ is the size of V.

Now let us write ¥ = P o H where P is a non-negative matrix whose entries sum to 1 and H
is a sign matrix. We can do this because ||¥||; = 1. The above discrepancy calculation then shows
that

discp(H) < ||[P o H|[v/s < m~%?



Moreover, applying the triangle inequality to the definition of discrepancy,
discp(F) < discp(H) + |[[(F — H) o P||1.

Let E = {(z,y) : F(x) # H(x)}. We can equivalently write the error term as

|(F = H)o Pl =23 P(a,y)
E

- Z P(z,y) + Z P(z,y) — Z P(z,y) — Z P(z,y)

(zy)EE (zy)€E (zy)EE (zy)eE
=1—(F,HoP)
=1 (F,0)
<1-—(1-9).

Putting everything together, we conclude

discp(F) < discp(H) + ||(F — H) o Plly < m™%? 44.

2 Proof of Lemma 5

We now prove Lemma 5 relating the spectral norm of a pattern matrix PM,,(¢)) to the Fourier
coeflicients of .
A key fact about the Fourier representation of ¢ is that we have

b) = 3 D(S)xs(a).
]

SCln

For each S C [n] let Ag be the pattern matrix PM,,(xs). Then by linearity,

U =PM,, () = > 4(S5)As.

SC[n]

To understand the singular values of ¥, we invoke the following lemma relating the singular
values of a sum of matrices to the singular values of the individual matrices.

Lemma 6. Let A and B be real matrices with ABT = 0 and ATB = 0. Then the multiset of
nonzero singular values of A+ B is the union of the singular values of A with singular values of B.

We won'’t prove the lemma, but the idea is as follows. The singular values of A 4+ B are just the
square roots of the eigenvalues of (A + B)(A + B)T = AAT + BB”. The orthogonality of A and
B further implies that vectors in the spectral decomposition of AA” are orthogonal to those in the
spectral decomposition of BBT. Hence the set of eigenvalues of AAT + BBT is just the union of
the eigenvalues of AAT and BBT.

In order to apply the lemma, we need to show that the matrices Ag are orthogonal. To see this,
let S, T C [n] with S # T. Then for every z,2' € {—1,1}"™,



AsATlz, 2] =) 0 xs(zlr & w)xr(| @ w)
I w

=> xs@l)xr@) D xsw)xr(w)
1 w
=0
because xg and yr are orthogonal. A similar argument can be used to show that
ALAr = 0.

So by the lemma, the set of nonzero singular values of ¥ is just the union of the nonzero singular
values of the matrices @@(S )JAg. We will be done if we can show that the only nonzero eigenvalue of
AL Ag is 27 . (2m)™ - m~ I8! (with multiplicity m!%)).

This can be done by writing ALAs =W ® V where W € {—1,1}?"%%" is given by

Wiw,w'] = xs(w)xs(w')

and V e R™"xm" ig

VLI = Y xs(al)xs(r).
ze{-1,1}"

The first matrix W has rank 1 and it is easy to see that it has 2" as its only singular value. The
second matrix V' is similar to 2" diag(J, ..., J) where J is the all-ones square matrix with m"~ 15|
rows. Hence the only nonzero singular value of V is 2™ . m™~IS| (with multiplicity m!®l). So the
only nonzero eigenvalue of AEAS is 277 . (2m)™ - m~ 151,

Now Lemma 5 follows because the spectral norm of ¥ is the largest singular value of any of the
matrices 1(S)Ag.



