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Lecture Notes 19:

Pattern Matrix Method Continued

Reading.

• Sherstov, The Pattern Matrix Method

In this lecture, we'll prove a version of the Pattern Matrix Method lifting approximate degree

to discrepancy.

Theorem 1. Let F = f ◦ gnm where gm : {−1, 1}m× ([m]×{−1, 1}) is given by gm(x, (i, w)) = xiw.
Then for every δ > 0,

disc(F ) ≤ δ +m− adeg1−δ(f)/2.

Here, we recall the de�nition of approximate degree and its dual characterization.

De�nition 2. Let ε > 0 and let f : {−1, 1}n → {−1, 1}. A real polynomial p : {−1, 1}n → R
ε-approximates f if |p(x) − f(x)| ≤ ε for all x ∈ {−1, 1}n. The ε-approximate degree of f is the

least degree of a polynomial p which approximates f , and is denoted adegε(f).

Theorem 3. Let f : {−1, 1}n → {−1, 1} be a boolean function. Then adegε(f) > d if and only if

there exists a function ψ : {−1, 1}n → R such that

1. 〈f, ψ〉 :=
∑

x∈{−1,1}n f(x)ψ(x) > ε

2. ‖ψ‖1 :=
∑

x∈{−1,1}n |ψ(x)| = 1

3. ψ̂(S) = 2−n
∑

x∈{−1,1}n ψ(x)χS(x) = 0 for every S ⊆ [n] with |S| ≤ d. Here χS(x) =
∏
i∈S xi.

1 Pattern Matrix Method Proof

It will be convenient to de�ne the notion of a �Pattern Matrix� of a function ψ : {−1, 1}n → R. In
the special case where ψ is boolean, this is simply the communication matrix of ψ ◦ gnm, but the
de�nition of course also makes sense when ψ is real-valued.

De�nition 4. Them-Pattern Matrix of a function ψ : {−1, 1}n → R is the 2nm×(2m)n real matrix

PMm(ψ) given by

PMm[(x1, . . . , xn), ((i1, w1), . . . (in, wn))] = ψ(g(x1, (i1, w1)), . . . , g(xn, (in, wn)))

= ψ(x|I ⊕ w)

where I = (i1, . . . , in) and the notation x|I indicates the projection of x to the coordinates speci�ed

by I, i.e., (x1,i1 , . . . , xn,in).
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Every formulation of the Pattern Matrix Method makes use of the following lemma which relates

the spectral norm of a pattern matrix to the Fourier coe�cients of the underlying function.

Lemma 5. Let ψ : {−1, 1}n → R and let Ψ = PMm(ψ) be its pattern matrix. Then the spectral

norm of Ψ is given by

‖Ψ‖ =
√

2nm · (2m)n · max
S⊆[n]

(
|ψ̂(S)| ·m−|S|/2

)
.

Let us see how to use Lemma 5 to prove Theorem 1.

Proof of Theorem 1. Recall from our discussion of discrepancy that for any function F : X × Y →
{−1, 1} we have

disc(F ) ≤ ‖F‖√
|X||Y |

.

(Here, for convenience, we will con�ate a two-party function with its sign matrix.) The proof of this

actually gives an upper bound on the discrepancy of F with respect to the uniform distribution. It

can be generalized as follows. Let P be any matrix with non-negative entries which sum to 1. Then

disc(F ) ≤ ‖F ◦ P‖ ·
√
|X||Y |

where F ◦P is the matrix obtained by taking the entrywise product of F and P . This upper bound
on discrepancy follows from the calculation

discP (F ) = max
S⊆X,T⊆Y

∣∣∣∣∣∣
∑
x∈S

∑
y∈T

P [x, y]F [x, y]

∣∣∣∣∣∣
= max

S,T
|1TS (P ◦ F )1T |

≤ max
S,T
‖1S‖2 · ‖P ◦ F‖ · ‖1T ‖2

= ‖P ◦ F‖
√
|X||Y |.

Now suppose f : {−1, 1}n → {−1, 1} is such that deg1−δ(f) > d. Let Ψ be the 2nm × (2m)n

Pattern Matrix of 2−nm ·m−n ·ψ. Then we have ‖Ψ‖1 = 1 and 〈Ψ, SF 〉 > 1− δ by Theorem 3. Now

we calculate ‖Ψ‖. First observe that for every S ⊆ [n],

|ψ̂(S)| = 2−n

∣∣∣∣∣∑
x

ψ(x)χS(x)

∣∣∣∣∣ ≤ 2−n‖ψ‖1 = 2−n.

Using the fact that ψ̂(S) = 0 for all |S| ≤ d, we have by Lemma 5 that

‖Ψ‖ ≤
√
s · (2−nm ·m−n) · 2−nm−d/2 = s−1/2m−d/2.

where s = 2nm · (2m)n is the size of Ψ.

Now let us write Ψ = P ◦H where P is a non-negative matrix whose entries sum to 1 and H
is a sign matrix. We can do this because ‖Ψ‖1 = 1. The above discrepancy calculation then shows

that

discP (H) ≤ ‖P ◦H‖
√
s ≤ m−d/2.
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Moreover, applying the triangle inequality to the de�nition of discrepancy,

discP (F ) ≤ discP (H) + ‖(F −H) ◦ P‖1.

Let E = {(x, y) : F (x) 6= H(x)}. We can equivalently write the error term as

‖(F −H) ◦ P‖1 = 2
∑
E

P (x, y)

=
∑

(x,y)∈Ē

P (x, y) +
∑

(x,y)∈E

P (x, y)−

 ∑
(x,y)∈Ē

P (x, y)−
∑

(x,y)∈E

P (x, y)


= 1− 〈F,H ◦ P 〉
= 1− 〈F,Ψ〉
≤ 1− (1− δ).

Putting everything together, we conclude

discP (F ) ≤ discP (H) + ‖(F −H) ◦ P‖1 ≤ m−d/2 + δ.

2 Proof of Lemma 5

We now prove Lemma 5 relating the spectral norm of a pattern matrix PMm(ψ) to the Fourier

coe�cients of ψ.
A key fact about the Fourier representation of ψ is that we have

ψ(x) =
∑
S⊆[n]

ψ̂(S)χS(x).

For each S ⊆ [n] let AS be the pattern matrix PMm(χS). Then by linearity,

Ψ = PMm(ψ) =
∑
S⊆[n]

ψ̂(S)AS .

To understand the singular values of Ψ, we invoke the following lemma relating the singular

values of a sum of matrices to the singular values of the individual matrices.

Lemma 6. Let A and B be real matrices with ABT = 0 and ATB = 0. Then the multiset of

nonzero singular values of A+B is the union of the singular values of A with singular values of B.

We won't prove the lemma, but the idea is as follows. The singular values of A+B are just the

square roots of the eigenvalues of (A + B)(A + B)T = AAT + BBT . The orthogonality of A and

B further implies that vectors in the spectral decomposition of AAT are orthogonal to those in the

spectral decomposition of BBT . Hence the set of eigenvalues of AAT + BBT is just the union of

the eigenvalues of AAT and BBT .

In order to apply the lemma, we need to show that the matrices AS are orthogonal. To see this,

let S, T ⊆ [n] with S 6= T . Then for every x, x′ ∈ {−1, 1}nm,
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ASA
T
T [x, x′] =

∑
I

∑
w

χS(x|I ⊕ w)χT (x′|I ⊕ w)

=
∑
I

χS(x|I)χT (x|I)
∑
w

χS(w)χT (w)

= 0

because χS and χT are orthogonal. A similar argument can be used to show that

ATSAT = 0.

So by the lemma, the set of nonzero singular values of Ψ is just the union of the nonzero singular

values of the matrices ψ̂(S)AS . We will be done if we can show that the only nonzero eigenvalue of

ATSAS is 2nm · (2m)n ·m−|S| (with multiplicity m|S|).
This can be done by writing ATSAS = W ⊗ V where W ∈ {−1, 1}2n×2n is given by

W [w,w′] = χS(w)χS(w′)

and V ∈ Rmn×mn is

V [I, I ′] =
∑

x∈{−1,1}n
χS(x|I)χS(xI′).

The �rst matrix W has rank 1 and it is easy to see that it has 2n as its only singular value. The

second matrix V is similar to 2mn diag(J, . . . , J) where J is the all-ones square matrix with mn−|S|

rows. Hence the only nonzero singular value of V is 2mn ·mn−|S| (with multiplicity m|S|). So the

only nonzero eigenvalue of ATSAS is 2nm · (2m)n ·m−|S|.
Now Lemma 5 follows because the spectral norm of Ψ is the largest singular value of any of the

matrices ψ̂(S)AS .

4


