Lecture Notes 19:
Pattern Matrix Method Continued

Reading.
- Sherstov, The Pattern Matrix Method

In this lecture, we'll prove a version of the Pattern Matrix Method lifting approximate degree to discrepancy.

Theorem 1. Let $F = f \circ g^m_n$ where $g_m : \{-1,1\}^m \times ([m] \times \{-1,1\})$ is given by $g_m(x, (i, w)) = x_i w$. Then for every $\delta > 0$,

$$\text{disc}(F) \leq \delta + m - \text{adeg}_1(f)/2.$$

Here, we recall the definition of approximate degree and its dual characterization.

Definition 2. Let $\epsilon > 0$ and let $f : \{-1,1\}^n \to \{-1,1\}$. A real polynomial $p : \{-1,1\}^n \to \mathbb{R}$ ϵ-approximates f if $|p(x) - f(x)| \leq \epsilon$ for all $x \in \{-1,1\}^n$. The ϵ-approximate degree of f is the least degree of a polynomial p which approximates f, and is denoted $\text{adeg}_\epsilon(f)$.

Theorem 3. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a boolean function. Then $\text{adeg}_\epsilon(f) > d$ if and only if there exists a function $\psi : \{-1,1\}^n \to \mathbb{R}$ such that

1. $\langle f, \psi \rangle := \sum_{x \in \{-1,1\}^n} f(x)\psi(x) > \epsilon$
2. $\|\psi\|_1 := \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$
3. $\hat{\psi}(S) = 2^{-n}\sum_{x \in \{-1,1\}^n} \psi(x)\chi_S(x) = 0$ for every $S \subseteq [n]$ with $|S| \leq d$. Here $\chi_S(x) = \prod_{i \in S} x_i$.

1 Pattern Matrix Method Proof

It will be convenient to define the notion of a “Pattern Matrix” of a function $\psi : \{-1,1\}^n \to \mathbb{R}$. In the special case where ψ is boolean, this is simply the communication matrix of $\psi \circ g^m_n$, but the definition of course also makes sense when ψ is real-valued.

Definition 4. The m-Pattern Matrix of a function $\psi : \{-1,1\}^n \to \mathbb{R}$ is the $2^{nm} \times (2m)^n$ real matrix $\text{PM}_m(\psi)$ given by

$$\text{PM}_m[(x_1, \ldots, x_n), ((i_1, w_1), \ldots (i_n, w_n))] = \psi(g(x_1, (i_1, w_1)), \ldots, g(x_n, (i_n, w_n))) = \psi(x|_I \oplus w)$$

where $I = (i_1, \ldots, i_n)$ and the notation $x|_I$ indicates the projection of x to the coordinates specified by I, i.e., $(x_{1,i_1}, \ldots, x_{n,i_n})$. 1
Every formulation of the Pattern Matrix Method makes use of the following lemma which relates the spectral norm of a pattern matrix to the Fourier coefficients of the underlying function.

Lemma 5. Let $\psi : \{-1, 1\}^n \to \mathbb{R}$ and let $\Psi = PM_m(\psi)$ be its pattern matrix. Then the spectral norm of Ψ is given by

$$
\|\Psi\| = \sqrt{2nm \cdot (2m)^n \cdot \max_{S \subseteq [n]} (|\hat{\psi}(S)| \cdot m^{-|S|/2})}.
$$

Let us see how to use Lemma 5 to prove Theorem 1.

Proof of Theorem 1. Recall from our discussion of discrepancy that for any function $F : X \times Y \to \{-1, 1\}$ we have

$$
disc(F) \leq \frac{\|F\|}{\sqrt{|X||Y|}}.
$$

(Here, for convenience, we will conflate a two-party function with its sign matrix.) The proof of this actually gives an upper bound on the discrepancy of F with respect to the uniform distribution. It can be generalized as follows. Let P be any matrix with non-negative entries which sum to 1. Then

$$
disc(F) \leq \|F \circ P\| \cdot \sqrt{|X||Y|}
$$

where $F \circ P$ is the matrix obtained by taking the entrywise product of F and P. This upper bound on discrepancy follows from the calculation

$$
disc_P(F) = \max_{S \subseteq X, T \subseteq Y} \left| \sum_{x \in S, y \in T} P[x, y]F[x, y] \right|
\leq \max_{S, T} |1_S^T (P \circ F) 1_T|
\leq \max_{S, T} \|1_S\| \cdot \|P \circ F\| \cdot \|1_T\|_2
= \|P \circ F\| \sqrt{|X||Y|}.
$$

Now suppose $f : \{-1, 1\}^n \to \{-1, 1\}$ is such that $\deg_{1-\delta}(f) > d$. Let Ψ be the $2^{nm} \times (2m)^n$ Pattern Matrix of $2^{-nm} \cdot m^{-n} \cdot \psi$. Then we have $\|\Psi\|_1 = 1$ and $\langle \Psi, S_F \rangle > 1 - \delta$ by Theorem 3. Now we calculate $\|\Psi\|$. First observe that for every $S \subseteq [n],

$$
|\hat{\psi}(S)| = 2^{-n} \left| \sum_x \psi(x) \chi_S(x) \right| \leq 2^{-n} \|\psi\|_1 = 2^{-n}.
$$

Using the fact that $\hat{\psi}(S) = 0$ for all $|S| \leq d$, we have by Lemma 5 that

$$
\|\Psi\| \leq \sqrt{s} \cdot (2^{-nm} \cdot m^{-n}) \cdot 2^{-n} m^{-d/2} = s^{-1/2} m^{-d/2},
$$

where $s = 2^{nm} \cdot (2m)^n$ is the size of Ψ.

Now let us write $\Psi = P \circ H$ where P is a non-negative matrix whose entries sum to 1 and H is a sign matrix. We can do this because $\|\Psi\|_1 = 1$. The above discrepancy calculation then shows that

$$
disc_P(H) \leq \|P \circ H\| \sqrt{s} \leq m^{-d/2}.
$$
Moreover, applying the triangle inequality to the definition of discrepancy,
\[\text{disc}_P(F) \leq \text{disc}_P(H) + \|(F - H) \circ P\|_1. \]
Let \(E = \{(x, y) : F(x) \neq H(x)\} \). We can equivalently write the error term as
\[
\|(F - H) \circ P\|_1 = 2 \sum_{E} P(x, y)
= \sum_{(x, y) \in E} P(x, y) + \sum_{(x, y) \in E} P(x, y) - \left(\sum_{(x, y) \in E} P(x, y) - \sum_{(x, y) \in E} P(x, y) \right)
= 1 - \langle F, H \circ P \rangle
= 1 - \langle F, \Psi \rangle
\leq 1 - (1 - \delta).
\]
Putting everything together, we conclude
\[\text{disc}_P(F) \leq \text{disc}_P(H) + \|(F - H) \circ P\|_1 \leq m^{-d/2} + \delta. \]

2 Proof of Lemma 5

We now prove Lemma 5 relating the spectral norm of a pattern matrix \(\text{PM}_m(\psi) \) to the Fourier coefficients of \(\psi \).

A key fact about the Fourier representation of \(\psi \) is that we have
\[\psi(x) = \sum_{S \subseteq [n]} \hat{\psi}(S) \chi_S(x). \]

For each \(S \subseteq [n] \) let \(A_S \) be the pattern matrix \(\text{PM}_m(\chi_S) \). Then by linearity,
\[\Psi = \text{PM}_m(\psi) = \sum_{S \subseteq [n]} \hat{\psi}(S) A_S. \]

To understand the singular values of \(\Psi \), we invoke the following lemma relating the singular values of a sum of matrices to the singular values of the individual matrices.

Lemma 6. Let \(A \) and \(B \) be real matrices with \(AB^T = 0 \) and \(A^T B = 0 \). Then the multiset of nonzero singular values of \(A + B \) is the union of the singular values of \(A \) with singular values of \(B \).

We won’t prove the lemma, but the idea is as follows. The singular values of \(A + B \) are just the square roots of the eigenvalues of \((A + B)(A + B)^T = AA^T + BB^T\). The orthogonality of \(A \) and \(B \) further implies that vectors in the spectral decomposition of \(AA^T \) are orthogonal to those in the spectral decomposition of \(BB^T \). Hence the set of eigenvalues of \(AA^T + BB^T \) is just the union of the eigenvalues of \(AA^T \) and \(BB^T \).

In order to apply the lemma, we need to show that the matrices \(A_S \) are orthogonal. To see this, let \(S, T \subseteq [n] \) with \(S \neq T \). Then for every \(x, x' \in \{-1, 1\}^n \),
\[A_S A_T^T [x, x'] = \sum_I \sum_w \chi_S(x|I \oplus w) \chi_T(x'|I \oplus w) \]
\[= \sum_I \chi_S(x|I) \chi_T(x|I) \sum_w \chi_S(w) \chi_T(w) \]
\[= 0 \]

because \(\chi_S \) and \(\chi_T \) are orthogonal. A similar argument can be used to show that

\[A_S^T A_T = 0. \]

So by the lemma, the set of nonzero singular values of \(\Psi \) is just the union of the nonzero singular values of the matrices \(\hat{\psi}(S) A_S \). We will be done if we can show that the only nonzero eigenvalue of \(A_S^T A_S \) is \(2^{nm} \cdot (2m)^n \cdot m^{-|S|} \) (with multiplicity \(m^{|S|} \)).

This can be done by writing \(A_S^T A_S = W \otimes V \) where \(W \in \{ -1, 1 \}^{2n \times 2n} \) is given by

\[W[w, w'] = \chi_S(w) \chi_S(w') \]

and \(V \in \mathbb{R}^{m n \times m n} \) is given by

\[V[I, I'] = \sum_{x \in \{ -1, 1 \}^n} \chi_S(x|I) \chi_S(x|I'). \]

The first matrix \(W \) has rank 1 and it is easy to see that it has \(2^n \) as its only singular value. The second matrix \(V \) is similar to \(2^{mn} \text{diag}(J, \ldots, J) \) where \(J \) is the all-ones square matrix with \(m^{n-|S|} \) rows. Hence the only nonzero singular value of \(V \) is \(2^{mn} \cdot m^{n-|S|} \) (with multiplicity \(m^{|S|} \)). So the only nonzero eigenvalue of \(A_S^T A_S \) is \(2^{nm} \cdot (2m)^n \cdot m^{-|S|} \).

Now Lemma 5 follows because the spectral norm of \(\Psi \) is the largest singular value of any of the matrices \(\hat{\psi}(S) A_S \).