CAS CS 591 B: Communication Complexity

Prof. Mark Bun

Fall 2019

Lecture Notes 19:

Pattern Matrix Method Continued

Reading.

• Sherstov, The Pattern Matrix Method

In this lecture, we'll prove a version of the Pattern Matrix Method lifting approximate degree to discrepancy.

Theorem 1. Let $F = f \circ g_m^n$ where $g_m : \{-1, 1\}^m \times ([m] \times \{-1, 1\})$ is given by $g_m(x, (i, w)) = x_i w$. Then for every $\delta > 0$,

$$\operatorname{disc}(F) \le \delta + m^{-\operatorname{adeg}_{1-\delta}(f)/2}$$

Here, we recall the definition of approximate degree and its dual characterization.

Definition 2. Let $\varepsilon > 0$ and let $f : \{-1,1\}^n \to \{-1,1\}$. A real polynomial $p : \{-1,1\}^n \to \mathbb{R}$ ε -approximates f if $|p(x) - f(x)| \leq \varepsilon$ for all $x \in \{-1,1\}^n$. The ε -approximate degree of f is the least degree of a polynomial p which approximates f, and is denoted $\operatorname{adeg}_{\varepsilon}(f)$.

Theorem 3. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a boolean function. Then $\operatorname{adeg}_{\varepsilon}(f) > d$ if and only if there exists a function $\psi : \{-1,1\}^n \to \mathbb{R}$ such that

1. $\langle f, \psi \rangle := \sum_{x \in \{-1,1\}^n} f(x)\psi(x) > \varepsilon$

2.
$$\|\psi\|_1 := \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$$

3. $\hat{\psi}(S) = 2^{-n} \sum_{x \in \{-1,1\}^n} \psi(x) \chi_S(x) = 0$ for every $S \subseteq [n]$ with $|S| \le d$. Here $\chi_S(x) = \prod_{i \in S} x_i$.

1 Pattern Matrix Method Proof

It will be convenient to define the notion of a "Pattern Matrix" of a function $\psi : \{-1, 1\}^n \to \mathbb{R}$. In the special case where ψ is boolean, this is simply the communication matrix of $\psi \circ g_m^n$, but the definition of course also makes sense when ψ is real-valued.

Definition 4. The *m*-Pattern Matrix of a function $\psi : \{-1, 1\}^n \to \mathbb{R}$ is the $2^{nm} \times (2m)^n$ real matrix $\mathrm{PM}_m(\psi)$ given by

$$PM_m[(x_1, \dots, x_n), ((i_1, w_1), \dots, (i_n, w_n))] = \psi(g(x_1, (i_1, w_1)), \dots, g(x_n, (i_n, w_n)))$$
$$= \psi(x|_I \oplus w)$$

where $I = (i_1, \ldots, i_n)$ and the notation $x|_I$ indicates the projection of x to the coordinates specified by I, i.e., $(x_{1,i_1}, \ldots, x_{n,i_n})$. Every formulation of the Pattern Matrix Method makes use of the following lemma which relates the spectral norm of a pattern matrix to the Fourier coefficients of the underlying function.

Lemma 5. Let $\psi : \{-1,1\}^n \to \mathbb{R}$ and let $\Psi = \mathrm{PM}_m(\psi)$ be its pattern matrix. Then the spectral norm of Ψ is given by

$$\|\Psi\| = \sqrt{2^{nm} \cdot (2m)^n} \cdot \max_{S \subseteq [n]} \left(|\hat{\psi}(S)| \cdot m^{-|S|/2} \right).$$

Let us see how to use Lemma 5 to prove Theorem 1.

Proof of Theorem 1. Recall from our discussion of discrepancy that for any function $F: X \times Y \rightarrow \{-1, 1\}$ we have

$$\operatorname{disc}(F) \le \frac{\|F\|}{\sqrt{|X||Y|}}.$$

(Here, for convenience, we will conflate a two-party function with its sign matrix.) The proof of this actually gives an upper bound on the discrepancy of F with respect to the uniform distribution. It can be generalized as follows. Let P be any matrix with non-negative entries which sum to 1. Then

$$\operatorname{disc}(F) \le \|F \circ P\| \cdot \sqrt{|X||Y|}$$

where $F \circ P$ is the matrix obtained by taking the entrywise product of F and P. This upper bound on discrepancy follows from the calculation

$$\operatorname{disc}_{P}(F) = \max_{S \subseteq X, T \subseteq Y} \left| \sum_{x \in S} \sum_{y \in T} P[x, y] F[x, y] \right|$$
$$= \max_{S, T} |1_{S}^{T} (P \circ F) 1_{T}|$$
$$\leq \max_{S, T} ||1_{S}||_{2} \cdot ||P \circ F|| \cdot ||1_{T}||_{2}$$
$$= ||P \circ F|| \sqrt{|X||Y|}.$$

Now suppose $f : \{-1, 1\}^n \to \{-1, 1\}$ is such that $\deg_{1-\delta}(f) > d$. Let Ψ be the $2^{nm} \times (2m)^n$ Pattern Matrix of $2^{-nm} \cdot m^{-n} \cdot \psi$. Then we have $\|\Psi\|_1 = 1$ and $\langle \Psi, S_F \rangle > 1 - \delta$ by Theorem 3. Now we calculate $\|\Psi\|$. First observe that for every $S \subseteq [n]$,

$$|\hat{\psi}(S)| = 2^{-n} \left| \sum_{x} \psi(x) \chi_S(x) \right| \le 2^{-n} ||\psi||_1 = 2^{-n}.$$

Using the fact that $\hat{\psi}(S) = 0$ for all $|S| \leq d$, we have by Lemma 5 that

$$\|\Psi\| \le \sqrt{s} \cdot (2^{-nm} \cdot m^{-n}) \cdot 2^{-n} m^{-d/2} = s^{-1/2} m^{-d/2}.$$

where $s = 2^{nm} \cdot (2m)^n$ is the size of Ψ .

Now let us write $\Psi = P \circ H$ where P is a non-negative matrix whose entries sum to 1 and H is a sign matrix. We can do this because $\|\Psi\|_1 = 1$. The above discrepancy calculation then shows that

$$\operatorname{disc}_P(H) \le \|P \circ H\| \sqrt{s} \le m^{-d/2}.$$

Moreover, applying the triangle inequality to the definition of discrepancy,

$$\operatorname{disc}_{P}(F) \leq \operatorname{disc}_{P}(H) + \|(F - H) \circ P\|_{1}$$

Let $E = \{(x, y) : F(x) \neq H(x)\}$. We can equivalently write the error term as

$$\begin{split} \|(F-H) \circ P\|_{1} &= 2\sum_{E} P(x,y) \\ &= \sum_{(x,y) \in \bar{E}} P(x,y) + \sum_{(x,y) \in E} P(x,y) - \left(\sum_{(x,y) \in \bar{E}} P(x,y) - \sum_{(x,y) \in E} P(x,y)\right) \\ &= 1 - \langle F, H \circ P \rangle \\ &= 1 - \langle F, \Psi \rangle \\ &\leq 1 - (1 - \delta). \end{split}$$

Putting everything together, we conclude

$$\operatorname{disc}_{P}(F) \le \operatorname{disc}_{P}(H) + ||(F - H) \circ P||_{1} \le m^{-d/2} + \delta.$$

2 Proof of Lemma 5

We now prove Lemma 5 relating the spectral norm of a pattern matrix $PM_m(\psi)$ to the Fourier coefficients of ψ .

A key fact about the Fourier representation of ψ is that we have

$$\psi(x) = \sum_{S \subseteq [n]} \hat{\psi}(S) \chi_S(x).$$

For each $S \subseteq [n]$ let A_S be the pattern matrix $\mathrm{PM}_m(\chi_S)$. Then by linearity,

$$\Psi = \mathrm{PM}_m(\psi) = \sum_{S \subseteq [n]} \hat{\psi}(S) A_S.$$

To understand the singular values of Ψ , we invoke the following lemma relating the singular values of a sum of matrices to the singular values of the individual matrices.

Lemma 6. Let A and B be real matrices with $AB^T = 0$ and $A^TB = 0$. Then the multiset of nonzero singular values of A + B is the union of the singular values of A with singular values of B.

We won't prove the lemma, but the idea is as follows. The singular values of A + B are just the square roots of the eigenvalues of $(A + B)(A + B)^T = AA^T + BB^T$. The orthogonality of A and B further implies that vectors in the spectral decomposition of AA^T are orthogonal to those in the spectral decomposition of BB^T . Hence the set of eigenvalues of $AA^T + BB^T$ is just the union of the eigenvalues of AA^T and BB^T .

In order to apply the lemma, we need to show that the matrices A_S are orthogonal. To see this, let $S, T \subseteq [n]$ with $S \neq T$. Then for every $x, x' \in \{-1, 1\}^{nm}$,

$$A_{S}A_{T}^{T}[x, x'] = \sum_{I} \sum_{w} \chi_{S}(x|_{I} \oplus w) \chi_{T}(x'|_{I} \oplus w)$$
$$= \sum_{I} \chi_{S}(x|_{I}) \chi_{T}(x|_{I}) \sum_{w} \chi_{S}(w) \chi_{T}(w)$$
$$= 0$$

because χ_S and χ_T are orthogonal. A similar argument can be used to show that

$$A_S^T A_T = 0.$$

So by the lemma, the set of nonzero singular values of Ψ is just the union of the nonzero singular values of the matrices $\hat{\psi}(S)A_S$. We will be done if we can show that the only nonzero eigenvalue of $A_S^T A_S$ is $2^{nm} \cdot (2m)^n \cdot m^{-|S|}$ (with multiplicity $m^{|S|}$). This can be done by writing $A_S^T A_S = W \otimes V$ where $W \in \{-1,1\}^{2^n \times 2^n}$ is given by

$$W[w, w'] = \chi_S(w)\chi_S(w')$$

and $V \in \mathbb{R}^{m^n \times m^n}$ is

$$V[I, I'] = \sum_{x \in \{-1, 1\}^n} \chi_S(x|_I) \chi_S(x_{I'}).$$

The first matrix W has rank 1 and it is easy to see that it has 2^n as its only singular value. The second matrix V is similar to $2^{mn} \operatorname{diag}(J, \ldots, J)$ where J is the all-ones square matrix with $m^{n-|S|}$ rows. Hence the only nonzero singular value of V is $2^{mn} \cdot m^{n-|S|}$ (with multiplicity $m^{|S|}$). So the only nonzero eigenvalue of $A_S^T A_S$ is $2^{nm} \cdot (2m)^n \cdot m^{-|S|}$.

Now Lemma 5 follows because the spectral norm of Ψ is the largest singular value of any of the matrices $\hat{\psi}(S)A_S$.