
CAS CS 591 B: Communication Complexity

Prof. Mark Bun Fall 2019

Lecture Notes 2:

Fooling Sets, Rank, and Covers

Reading.

• Rao-Yehudayoff Chapter 1 (Fooling Sets and Rectangle Covers), Chapter 2 (through pg. 58)

1 Fooling Sets

The method of fooling sets refines arguments based on rectangle size. Intuitively, a fooling set is a
set of inputs which is hard to cover by disjoint unions of rectangles. Formally, a fooling set for a
function f is a set S ⊆ X × Y such that |R ∩ S| ≤ 1 for every rectangle R which is monochromatic
with respect to f .

Theorem 1 If S is a fooling set for f , then Pcc(f) ≥ log |S|.

Proof: Recall that any protocol computing f with c bits of communication partitions X×Y into
at most 2c monochromatic rectangles. Any partition of X ×Y into monochromatic rectangles must
be at least as large as S. Hence |S| ≥ 2P

cc(f).

Example 2 Going back to EQn, we can take S = {(x, x) : x ∈ {0, 1}n} to see that Pcc(EQn) ≥ n.

Example 3 Consider the function GTn. We claim that the set S = {(x, x) : x ∈ {0, 1}n} is a
fooling set for GTn. To see this, suppose T is a monochromatic set which contains both (x, x) and
(x′, x′), and suppose WLOG that x < x′. Then T cannot contain (x, x′) so it is not a rectangle.

Example 4 One of the central functions in the study of communication complexity is the disjoint-
ness function DISJn : {0, 1}n×{0, 1}n → {0, 1}. This function is defined by DISJn(x, y) = 1 iff for
every index i, either xi = 0 or yi = 0. Equivalently, this function checks whether the sets for which
x and y are indicator vectors are disjoint.

We can prove a lower bound of n on Pcc(DISJn) using the fooling set S = {(x, x̄) : x ∈ {0, 1}n}.
Note that DISJn(x, x̄) = 1 for every pair of inputs in S. To see that this is a fooling set, let T be a
monochromatic set containing both (x, x̄) and (x′, x̄′). Then either (x, x̄′) or (x′, x̄) must intersect,
so T cannot be a rectangle.

2 Rank

A two-party communication problem f : X × Y → {0, 1} naturally corresponds to a matrix Mf as
follows. The rows of Mf are indexed by elements of X and the columns are indexed by elements of
Y and Mf [x, y] = f(x, y). Let rank(f) = rank(Mf).

To understand the connection between rank and deterministic communication, we need two
facts. The first is that combinatorial rectangles have low rank.

1

Lemma 5 Let A×B ⊂ X × Y be a non-empty combinatorial rectangle. Then the matrix M where
M [x, y] = 1 if (x, y) ∈ A×B and M [x, y] = 0 otherwise has rank 1.

Proof: Let vA ∈ {0, 1}|X| and vB ∈ {0, 1}|Y | be the indicator vectors for A and B, respectively.
Then M = vAv

T
B, and hence M has rank 1.

The second is that rank is subadditive.

Fact 6 Let M and N be matrices with the same dimensions. Then rank(M + N) ≤ rank(M) +
rank(N).

Proof: Let CM and CN denote the sets of columns of M and N , respectively, so rank(M) =
dim span(CM) and rank(N) = dim span(CN). The column span of M + N is contained in the
span(CM ∪ CN), so rank(M + N) ≤ dim span(CM ∪ CN) ≤ rank(M) + rank(N).

Theorem 7 For any function f : X × Y → {0, 1}, we have Pcc(f) ≥ log rank(f).

Proof: Let Π be a protocol computing f with cost c. For each leaf ` of Π on which the
protocol outputs 1, let M` be the matrix with R`[x, y] = 1 if (x, y) reaches ` and R`[x, y] = 0
otherwise. Since M` is the indicator of a rectangle, rank(M`) = 1. Moreover, Mf =

∑
`M`, so

rank(Mf) ≤
∑

` rank(M`) ≤ 2c. Hence c ≥ log rank(f).

Example 8 The equality and greater-than functions correspond to matrices of full rank 2n, and
hence have deterministic communication complexity ≥ n.

2.1 The Log Rank Conjecture

Deterministic communication can also be upper bounded by rank itself. To see this, suppose Mf

has rank r. Then we can decompose Mf = A ·B where A is an |X| × r Boolean matrix and Y is a
r× |Y | real matrix. Observe that f(x, y) = eTxMfey = eTxABey, where ex and ey are the indicators
for x and y respectively. So Alice can send Bob the r-dimensional Boolean vector eTxA which suffices
for him to compute f(x, y).

There’s an exponential gap between the best known bounds onPcc in terms of rank: log rank(f) ≤
Pcc(f) ≤ Õ(

√
rank(f)). (The improved upper bound was obtained by Lovett in 2013.) Which

bound is closer to the truth? Thirty years ago, Lovász and Saks conjectured that the lower
bound is tight up to polynomial factors, namely that that there is a constant c ≥ 1 such that
log rank(f) ≤ Pcc(f) ≤ O(logc rank(f)). This is probably the most famous conjecture in commu-
nication complexity.

While we are far from resolving the log rank conjecture itself, we do know a lot about related
formulations in other models. For instance, the log of the sign-rank of a matrix characterizes
its UPPcc complexity up to an additive constant. On the other hand, a recent breakthrough of
Chattopadhyay, Mande, and Sherif showed an exponential gap between the log of the approximate-
rank of a matrix and its BPPcc complexity, refuting the “approximate log rank conjecture.” More
on these later in the course.

2

3 Covers and Nondeterminism

Recall that we can lower bound deterministic communication by showing that we need many
monochromatic rectangles to partition the input space. A stronger statement (which could per-
haps be easier to prove in practice for specific functions) is to show that we need many rectangles
just to cover the 0-inputs or the 1-inputs to a function. More precisely let us define the 0-cover and
1-cover numbers as follows.

Definition 9 For b ∈ {0, 1}, let Cb(f) be the minimum number of rectangles needed to cover the
b-inputs to f . Namely, it is the smallest set of rectangles whose union equals f−1(b).

Clearly logC0(f) and logC1(f) are both lower bounds on Pcc(f).

Example 10 Let’s look at the covering numbers for the Equality function. Recall that we used the
fooling set method to show that C1(EQn) ≥ 2n. On the other hand, C0(EQn) ≤ 2n. To see this,
consider the set of rectangles of the form Ri,b = {(x, y) : xi = b, yi 6= b}.

The above example points out an interesting property of the Equality function: It has low co-
nondeterministic complexity. Namely, on an pair of inputs (x, y) for which EQn(x, y) = 0, and a
proof of length only log n capturing the index i on which xi 6= yi, Alice and Bob can verify that
x 6= y using only 2 bits of communication. On the other hand, the nondeterministic complexity of
EQ is still high, as it is hard for Alice and Bob to verify that x = y even with an O(n)-length proof.

This motivates us to study nondeterministic and co-nondeterministic protocols.

Definition 11 A nondeterministic protocol is a collection of deterministic protocols {Πw : w ∈
{0, 1}s}. Such a protocol computes a function f if

• For every (x, y) ∈ f−1(1) there exists a w ∈ {0, 1}s such that Πw(x, y) = 1

• For every (x, y) ∈ f−1(0), for all w ∈ {0, 1}s we have Πw(x, y) = 0.

The cost of such a protocol is s + maxw∈{0,1}s cost(Πw), and the nondeterministic communication
complexity of a function f , denoted NPcc(f), is the least cost of such a protocol computing f . Simi-
larly, a co-nondeterministic protocol computes f if 1) for every (x, y) ∈ f−1(1), we have Πw(x, y) = 1
for all w ∈ W and 2) for every (x, y) ∈ f−1(0) there exists w ∈ W such that Πw(x, y) = 0. The
co-nondeterministic communication complexity of f is denoted by coNPcc(f).

Nondeterministic communication complexity is tightly characterized by covering numbers.

Theorem 12 For every function f : X × Y → {0, 1}, we have NPcc(f) = logC1(f) + Θ(1) and
coNPcc(f) = logC0(f) + Θ(1).

Proof: We prove this for NPcc. First, suppose f admits a nondeterministic protocol with witness
size s and protocol length c. Then the 1-inputs to f are covered by a union of 2s ·2c 1-monochromatic
rectangles. Hence C1(f) ≤ 2NPcc(f).

Now we show how to design a nondeterministic protocol for f which has a small covering number.
Let {Rw} be a cover of the 1-inputs of f . Then f(x, y) = 1 iff there exists a w such that (x, y) ∈ Rw.
So given w as a proof, Alice and Bob can verify whether (x, y) ∈ Rw using 2 bits of communication,
and hence NPcc(f) ≤ dlogC1(f)e+ 2.

3

Theorem 13 For every function f , we have Pcc(f) ≤ O(logC0(f) · logC1(f)) ≤ O(NPcc(f) ·
coNPcc(f)).

Proof: We sketch an “algorithmic” proof of this result which is reminiscent of the protocol for
Clique vs. Independent Set. Given a small 0-cover and a small 1-cover, we will design a protocol
which uses binary search to try to find a 0-rectangle containing (x, y), thus proving that f(x, y) = 0.
(If the protocol fails, then we can conclude that f(x, y) = 1.) In each of stages i = 1, . . . , logC0(f),
let Ti be the set of “live” 0-rectangles which could still contain (x, y). In every round, Alice and
Bob will transmit O(logC1(f)) bits to decrease the size of Ti by a factor of 2, giving a total of
O(logC0(f) · logC1(f)) bits of communication.

The way to do this pruning is as follows. If there is a 1-rectangle containing row x whose row
set intersects at most half of the rows sets of the rectangles in Ti, then Alice can send its identity to
Bob with O(logC1(f)) bits and the parties can remove the remaining half of Ti from consideration.
Otherwise, if there is a 1-rectangle containing column y that intersects at most half of Ti in columns,
Bob can send its identity to Alice. Note that a 0-rectangle containing x will always survive this
pruning process. If neither Alice nor Bob can find such a 1-rectangle, then the parties can conclude
that f(x, y) = 0. To see this, suppose instead that (x, y) were contained in a 1-rectangle R. Then
by the pigeonhole principle, R could intersect at most half of Ti in rows and at most half of Ti in
columns, so Alice or Bob would be able to prune.

Theorem 13 tells us that if f has both a good nondeterministic protocol and a good co-
nondeterministic protocol, then it has a good deterministic protocol. One way to state this suc-
cinctly is as follows. By abusing notation, define the complexity classes Pcc,NPcc, coNPcc as
the sequences of functions {fn : {0, 1}n × {0, 1}n → {0, 1}} which have (log n)O(1)-cost determin-
istic, nondeterministic, and co-nondeterministic protocols, respectively. Then Theorem 13 implies
Pcc = NPcc ∩ coNPcc. Also note that Example 10 shows that Pcc (coNPcc, and by comple-
menting, Pcc (NPcc.

4

