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Prof. Mark Bun Fall 2019

Lecture Notes 6:

Information Theory: Entropy, Mutual Information

Reading.

• Rao-Yehudayoff Chapter 6

We are starting a unit on information complexity, which is a framework for understanding
communication complexity using information theory. While the scope as since broadened, Shannon
introduced information theory to understand how well efficiently messages can be compressed while
still being accurately transmitted. The objectives of information theory are are not quite the same
as those in communication complexity, but there are nevertheless deep connections and surprisingly
strong results about communication that one can prove using information.

In this lecture, we won’t quite get to the relationship between information and communication,
as we’ll first have to get through the basic definitions and important concepts from information
theory itself.

1 Entropy

In the basic information transmission problem, Alice is given a random string A ∈ {0, 1}n and
wishes to transmit A to Bob (who knows the distribution of A, but not its realization) using as
short a message as possible. Let’s look at some examples:

Example 1. If A is uniformly distributed over S for some subset S ⊂ X, then Alice can encode A
using only log |S| ≤ n bits.

Example 2. If A is concentrated at a single point, e.g, A = 0n deterministically, then Alice doesn’t
need to send anything to Bob at all.

Example 3. Suppose A = 0n with probability 1 − ε and A is uniformly random otherwise. We
can’t hope to encode A using fewer than n bits in the worst case, but on average we can do better.
In particular, let us encode 0n using the string 0 and every other x ∈ {0, 1}n using the string 1x.
Then the expected length of this encoding is at most

(1− ε) · 1 + ε · (n+ 1) ≈ εn.

Intuitively, an efficient encoding should aim to assign shorter strings to inputs that appear with
higher probability. Let p be the probability mass function of A. Let us sort the elements of X so
that p(x1) ≥ p(x2) ≥ · · · ≥ p(x2n), and think of encoding element xi using the integer i. We observe
that for every i,

1 ≥ p(x1) + · · ·+ p(xi) ≥ ip(xi),
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and hence i ≤ 1/p(xi). So each xi is encoded using about log i ≤ log 1/p(xi) bits, and hence the
expected length of an encoding is about

EA

[
log

1

p(A)

]
.

This motivates the definition of entropy:

Definition 4. Let A be a random variable over a discrete space X with probability mass function
p. Then the (Shannon) entropy of A is

H(A) = EA

[
log

1

p(A)

]
=

∑
x∈X:p(x)>0

p(x) log
1

p(x)
.

Via Huffman codes, entropy gives a complete characterization of the expected message length
needed to transmit any random variable.

Definition 5 (Huffman Coding Theorem). Every random variable has an encoding with expected
length at most H(A) + 1. Moreover, every encoding has expected length at least H(X).

Huffman’s Theorem (and the related Shannon Source Coding Theorem) show that entropy can
be thought of as the inherent amount of information contained in a random variable. Let’s record
some basic mathematical properties of entropy.

• H(A) ≥ 0 for every random variable A and H(A) = 0 iff A is a point mass.

• If A is uniform over a set S, then

H(A) = EA [log |S|] = log |S|.

• Subadditivity: If A and B are jointly distributed random variables, then H(AB) ≤ H(A) +
H(B). (Here and elsewhere in the information-theory literature, AB denotes the joint random
variable (A,B), and not the product of A and B.)

Proof. We will use concavity of the log function to show that H(A) +H(B) −H(AB) ≥ 0.
Let p(x, y) be the PMF of AB and for convenience let p(x) = Pr[A = x] =

∑
y∼B[p(x, y)] and

p(y) = Pr[B = y] =
∑

x∼A[p(x, y)]. Then

H(AB)−H(A) +H(B) =
∑
x,y

p(x, y) log
1

p(x, y)
−
∑
x

p(x) log
1

p(x)
−
∑
y

p(y) log
1

p(y)

=
∑
x,y

p(x, y)

(
log

1

p(x, y)
− log

1

p(x)
− log

1

p(y)

)
=
∑
x,y

p(x, y) log

(
p(x)p(y)

p(x, y)

)
≤ log

∑
x,y

p(x, y)

(
p(x)p(y)

p(x, y)

)
= log 1 = 0.

The inequality here is an application of Jensen’s Inequality: For any real-valued random
variable Z and any concave function f , we have E[f(Z)] ≤ f(E[Z]).
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Example 6. Suppose A,B,C are uniformly random bits conditioned on A ⊕ B ⊕ C = 0. Then
H(A) = 1, H(AB) = 2, and H(ABC) = 2. Since C is completely determined by A and B, the
random variable ABC carries no additional information over AB.

2 Conditional Entropy

Let us revisit the information transmission problem, but suppose Alice is given A and Bob is given
B, where A and B are possibly correlated random variables. Can Alice use the fact that Bob knows
B to save on the cost of transmitting A? If A and B are independent, then the answer is no. But
revisiting the above example, if A and B were, say, uniform bits conditioned on A ⊕ B = 0, then
B completely determines A, and hence Alice doesn’t need to send anything. (Even though A itself
has positive entropy.)

The notion of conditional entropy allows us to formulate how much information the random
variable A still contains after Bob has observed B:

Definition 7. Let A and B be jointly distributed random variables. Then the conditional entropy
of A given B is

H(A|B) = Ey∼BH(A|B = y).

Theorem 8 (Chain Rule). For every A,B, we have

H(AB) = H(B) +H(A|B).

Proof. We compute using Bayes’ rule

H(AB) =
∑
x,y

p(x, y) log

(
1

p(x, y)

)
=
∑
x,y

p(x, y) log

(
1

p(y) · p(x|y)

)
=
∑
y

p(y) log
1

p(y)
+
∑
y

p(y)
∑
x

p(x|y) log 1

p(x|y)

= H(B) +H(A|B).

The Chain Rule plus subadditivity of entropy implies that conditioning can only reduce entropy:

H(A|B) = H(AB)−H(B) ≤ H(A) +H(B)−H(B) ≤ H(A).

However, note that conditioning on a specific realization of B does not necessarily reduce entropy,
i.e., H(A|B = y) could be larger than H(A). (Can you find a counterexample?)

3 Mutual Information

Conditional entropy tells us how much information is left in A once B is revealed. We can also ask
how much information is learned about A when B is revealed. This quantity is captured by the
notion of mutual information.
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Definition 9. The mutual information between two random variables A,B is defined by

I(A;B) = I(B;A) = H(A)−H(A|B)

= H(B)−H(B|A)
= H(A) +H(B)−H(AB).

Let’s record some properties of mutual information:

• I(A;B) ≥ 0, since conditioning always reduces entropy.

• A and B are independent iff I(A;B) = 0.

• If A = B, then I(A;B) = H(A) = H(B).

• Unlike entropy, mutual information can be either subadditive or superadditive. If A,B,C are
uniform bits conditioned on being equal, then I(AB;C) = 1 < 2 = I(A;C) + I(B;C). On
the other hand, if A,B,C are uniform conditioned on A⊕ B ⊕ C = 0, then I(AB;C) = 1 >
0 = I(A;C) + I(B;C).

We can also define conditional mutual information:

Definition 10. The mutual information between two random variables A,B conditioned on a third
random variable C is defined by

I(A;B|C) = Ez∼CI(A;B|C = z)

= H(A|C)−H(A|BC)

= H(A|C) +H(B|C)−H(AB|C).

Example 11. Unlike with entropy, mutual information can increase under conditioning. Returning
to our example of A,B,C being uniform conditioned on A⊕ B ⊕ C = 0, we have I(A;B) = 0 but
I(A;B|C) = 1.

Mutual information also satisfies a chain rule:

Theorem 12. I(AB;C) = I(B;C) + I(A;C|B)

Proof.

I(AB;C) = H(C)−H(C|AB)

= H(C)−H(C|B) +H(C|B)−H(C|AB)

= I(B;C) + I(A;C|B).
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