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Reading.

• Rao-Yehudayoff Chapter 6

1 A Few More Facts about Mutual Information

Lemma 1.
I(A;B) = I(A;B|C)− I(A;C|B) + I(A;C)

Proof. By applying the chain rule two different ways,

I(A;BC) = I(A;C) + I(A;B|C) = I(A;B) + I(A;C|B).

Rearranging gives the identity.

The following claim states that post-processing cannot increase the amount of information one
random variable reveals about another. (Think, e.g., of C = f(B) for a randomized function f ,
where the randomness in f is independent of everything else.)

Lemma 2 (Information Processing Inequality). Let A → B → C be a Markov chain, i.e., C is
independent from A conditioned on B. Then I(A;C) ≤ I(A;B).

Proof.

I(A;C) ≤ I(A;C) + I(A;B|C) = I(A;BC) = I(A;B) + I(A;C|B) = I(A;B),

where the last equality follows because I(A;C|B) = 0 by definition.

2 KL Divergence

Mutual information gives us a way of measuring how far two random variables are from being
independent. A related way to measure similarity between two distributions is via the notion of KL
divergence, or relative entropy.

Let A,B be random variables over the same sample space X, with probability mass functions p
and q, respectively. Then we define

Definition 3 (KL Divergence).

D(A‖B) =
∑

x∈X:p(x)>0

p(x) log
p(x)

q(x)
= Ex∼A log

p(x)

q(x)
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Like entropy, KL divergence has an intuitive interpretation in terms of coding messages. We
may write

D(A‖B) = Ex∼A log
1

q(x)
− Ex∼A log

1

p(x)
.

The second term is simply the entropy of A, i.e., the minimum expected length for an encoding of
A. The first term we can think of as the expected length of an encoding of A using a code which
was optimized for B. So KL divergence captures the loss of using a code designed for B rather than
a code designed for A.

Let’s record a few facts about KL divergence:

• D(A‖A) = 0

• D(A‖B) ≥ 0. This follows by Jensen:

−Ex∼A log
p(x)

q(x)
≤ − logEx∼A

p(x)

q(x)

= logEx∼A
q(x)

p(x)

= log 1 = 0.

• Unlike mutual information, D(A‖B) 6= D(B‖A) in general

• If A is supported on a point outside of the support of B, then D(A‖B) =∞

KL divergence also has a nice connection to mutual information. For jointly distributed random
variables A,B, let A⊗B denote the product distribution with marginals A and B.

Theorem 4. I(A;B) = D(AB‖A⊗B)

Proof.

D(AB‖A⊗B) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log

(
1

p(x)
+

1

p(y)
− 1

p(x, y)

)
= H(A) +H(B)−H(AB) = I(A;B).

3 Information Cost

We are now ready to use information theory to define notions of information cost for communication
protocols. Let µ be a distribution over X ×Y and let Π be a communication protocol using private
randomness RA and RB for Alice and Bob respectively, and public randomness R. Define the tran-
script of the protocol, denoted T (x, y, rA, rB, r), to consist of the public randomness string followed
by the sequence of messages exchanged between Alice and Bob. Let AB be jointly distributed over
X × Y according to µ.

The first way one might model the information cost of a protocol is in terms of how much
information about Alice and Bob’s inputs is revealed to an external observer.
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Definition 5. The external information cost of a protocol Π with respect to a distribution µ,
denoted ICext

µ (Π) = I(AB;T ).

It turns out that there is another way to model information cost which is easier to work with.
This is the notion of internal information cost, or the amount Alice and Bob learn about each
others’ inputs over the course of the protocol.

Definition 6. The (internal) information cost of a protocol Π with respect to a distribution µ,
denoted ICµ(Π) = I(A;T |B) + I(B;T |A).

You may (very reasonably) ask why the conditioning does not include Alice and Bob’s private
randomness. This is because conditioning on private randomness does not affect the information
cost:

Lemma 7. I(A;T |BRB) = I(A;T |B)

Proof. We prove the claim by induction on the number of rounds of the protocol. Let T≤k denote
the prefix of the transcript through round k. The claim is clearly true for T0, which consists only of
the public randomness. Suppose it is Bob’s turn to speak in round k and the claim is true through
round k − 2, so our induction hypothesis says

I(A;T≤k−1|BRB) = I(A;T≤k−1|B).

By applying the chain rule twice,

I(A;T≤k|B) = I(A;T≤k−1|B) + I(A;Tk|BT≤k−1)
= I(A;T≤k−2|B) + I(A;Tk−1|BT≤k−2) + I(A;Tk|BT≤k−1)

Similarly, we can write

I(A;T≤k|BRB) = I(A;T≤k−2|BRB) + I(A;Tk−1|BRBT≤k−2) + I(A;Tk|BRBT≤k−1).

The third term of each identity is zero, since it’s Bob’s turn to speak in round k: Alice’s input
does not affect Tk except through T≤k−1 which is already being conditioned on. By the induction
hypothesis, it’s enough to show that

I(A;Tk−1|BT≤k−2) = I(A;Tk−1|BRBT≤k−2).

To see this, we use Lemma 1 to write

I(A;Tk−1|BT≤k−2) = I(A;Tk−1|BT≤k−2RB)− I(RB;Tk−1|BT≤k−2A) + I(RB;Tk−1|BT≤k−2).

The last two terms are zero because it is Alice’s turn to speak in round k−1; hence, Bob’s randomness
RB does not affect Tk−1 except through T≤k−2.

4 Information vs. Communication

We establish the following relationships showing that information lower bounds communication.
Let CCµ(Π) denote the expected number of bits exchanged under Π for inputs chosen from µ.
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Theorem 8. For every distribution µ,

ICµ(Π) ≤ ICext
µ (Π) ≤ CCµ(Π).

Proof. We begin with the first inequality. By repeatedly applying the chain rule, we get

ICext
µ (Π) = I(AB;T ) =

L∑
k=1

I(AB;Tk|T≤k−1),

where L is the length of the protocol. By the chain rule and non-negativity of mutual information,
we have

I(AB;Tk|T≤k−1) ≥ max {I(A;Tk|BT≤k−1), I(B;Tk|AT≤k−1)} .

Now observe that if it is Alice’s turn to speak in round k, then I(B;Tk|AT≤k−1) = 0. Similarly, if
it’s Bob’s turn to speak, then I(A;Tk|BT≤k−1) = 0. So we actually have

I(AB;Tk|T≤k−1) ≥ I(A;Tk|BT≤k−1) + I(B;Tk|AT≤k−1).

Repeatedly applying the chain rule again lets us conclude

ICext
µ (Π) =

L∑
k=1

I(AB;Tk|T≤k−1)

≥
L∑
k=1

I(A;Tk|BT≤k−1) + I(B;Tk|AT≤k−1)

= I(A;T |B) + I(B;T |A)

= ICµ(Π).

Next, to bound the external information by the communication, we simply observe:

ICext
µ (Π) = I(Π0;AB) + I(Π>0;AB|Π0) = I(Π>0;AB|Π0) ≤ H(Π>0),

and the latter is at most the average total length of messages sent between Alice and Bob.
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