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Lecture Notes 8:

Disjointness Lower Bound

Reading.

• Rao-Yehudayoff Chapter 6

The lower bound of Ω(n) on the randomized communication complexity of Disjointness is perhaps
the most impactful result in the entire area. It has consequences in circuit complexity, property
testing, algorithmic game theory, extension complexity, data structures, etc. All known proofs of
the tight lower bound use information theory one way or another, but the ideas we’ve developed in
our study of information complexity give a particularly simple and intuitively satisfying proof. The
presentation here follows the proof of Bar-Yossef, Jayram, Kumar, and Sivakumar, “An information
statistics approach to data stream and communication complexity.”

It will be more convenient to work with the complement of the Disjointness function, which we’ll
call the Set-Intersection function. Define

INTn(x, y) =
n∨
i=1

(xi ∧ yi).

The idea of the proof will be to show that for some distribution ζ over {0, 1}2, a protocol for
computing INTn over inputs drawn from ζ⊗n will have to reveal n times as much information as a
protocol for computing AND2 over inputs drawn from ζ. We will then exhibit a distribution ζ over
{0, 1}2 which requires Ω(1) bits of information to compute AND2.

1 From INTn to AND2

Define the distribution ζ over {0, 1}2×{a, b} as follows. Let D be uniformly random from {a, b}. If
D = a, let A = 0 and B be uniform over {0, 1}. If D = b, let B = 0 and A be uniform over {0, 1}.
Then A and B are independent conditioned on D.

Lemma 1 (Information Cost Decomposition). Let ζ be the distribution defined above, and let
((A,B), ~D) ∼ ζ⊗n. Then for any protocol Π,

I(AB; Π(A,B)| ~D) ≥
n∑
i=1

I(AiBi; Π(A,B)| ~D).
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Proof. Abbreviating Π = Π(A,B), we have

I(AB; Π ~D) = H(AB| ~D)−H(AB|Π ~D)

=

n∑
i=1

H(AiBi| ~D)−H(AB|Π ~D) since the Ai, Bi’s are independent given D

≥
n∑
i=1

H(AiBi| ~D)−
n∑
i=1

H(AiBi|Π ~D) by subadditivity of entropy

=
n∑
i=1

I(AiBi; Π| ~D).

Lemma 2 (Reduction Lemma). Let Π compute INTn with probability at least 1− ε on every input.
Let ζ be the distribution defined above and let ((A,B), ~D) ∼ ζ⊗n and ((U, V ), D) ∼ ζ. Then for
every i ∈ [n],

I(AiBi; Π(A,B)| ~D) ≥ inf
P
I(UV ;P (U, V )|D),

where the infimum is taken over protocols P computing AND2 with probability at least 1−ε on every
input.

Proof. Let Π be a protocol computing INTn with probability at least 1− ε on every input. Fix an
index i. By the definition of conditional mutual information,

I(AiBi; Π(A,B)| ~D) = E~d∼{a,b}n−1 [I(AiBi; Π(A,B)|Di, ~D−i = ~d)].

So it suffices to show that for every fixed ~d = (d1, . . . , di−1, di+1, . . . , dn) ∈ {a, b}, there is a protocol
for AND2 with information cost I(AiBi; Π(A,B)|Di, ~D−i = ~d).

We now describe such a protocol P
i,~d

for AND2. On input u, v, Alice and Bob set xi = u, yi = v

and every other (xj , yj) to a sample from ζ conditioned on dj (using private randomness). They
then run the protocol Π(x, y) and output its result. This protocol computes the AND2 function
since u = v = 1 iff x and y are intersecting inputs.

Next, we analyze the conditional information cost of P
i,~d
. One can check by inspection that

the joint distribution of (U, V,D, P
i,~d

(U, V )) is equal to that of (Ai, Bi, Di,Π(A,B)) conditioned on
~D−i = ~d.

Hence
I(UV ;P

j,~d
(U, V )|D) = I(AiBi; Π(A,B)|Di, ~D−i = ~d).

Theorem 3. Let ζ be the distribution defined above and let ((A,B), D) ∼ ζ⊗n. Then

BPPpub
ε (INTn) ≥ n · inf

P
I(AB;P (A,B)|D)

where the infimum is taken over protocols P computing AND2 with probability at least 1− ε.

Proof. Follows by combining the Reduction Lemma and the Information Cost Decomposition, to-
gether with the fact that conditional external information I(AB; Π(A,B)| ~D) is a lower bound on
communication cost.
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2 Why Not a Product Distribution?

Alice and Bob’s inputs when sampled from ζ⊗n are independent conditioned on D, but they are not
fully independent. Why couldn’t we use a fully independent distribution to prove a lower bound
for Set-Intersection? It turns out that Set-Intersection is easy for product distributions: Babai,
Frankl, and Simon showed that for every product distribution µ, there is a distributional protocol
for Set-Intersection showing that Dµ(INTn) = O(

√
n log n). But this may still not be so convincing,

since there is a distributional protocol with respect to ζ⊗n as well: all inputs in its support are non-
intersecting, so nothing needs to be communicated. The magic in this proof lies in the fact that any
protocol for computing INTn on every input with high probability must reveal a lot of information
when run on the distribution ζ⊗n, even though that distribution isn’t even supported on yes inputs.

To see why this argument wouldn’t work for when Alice and Bob are fully independent, we
argue that for any product distribution there is a protocol which succeeds on every input but
has low expected communication when run on that distribution. Specifically, let’s fix a product
distribution on (A,B) and consider the following protocol for Set-Intersection. For some parameter
ε > 0, Alice finds a coordinate (if one exists) such that H(Ai) ≥ ε and H(Bi) ≥ ε. If one is found,
the parties exchange the coordinate, output 1 if both coordinates are 1, condition on the values
seen and repeat. When they run out of high-entropy coordinates, then the remaining entropy in A
and B must be at most ε · n, so they can just transmit their sets with roughly this many bits of
communication.

How many rounds should we expect this protocol to last? If H(Ai) ≥ ε, then Pr[Ai = 1] ≥
Ω(ε/ log(1/ε)). So the probability of finding an intersection is at least about ε2. Thus with high
probability, the protocol will not last for more than about 1/ε2 rounds when actually run on the
distribution (A,B). Setting ε ≈ n−1/3 gives expected total communication roughly n2/3.

3 Information Complexity of AND

Our goal is now to prove a lower bound on the information complexity of any protocol computing
AND2. In this section, we’ll give the proof as a consequence of a sequence of lemmas, and give the
proofs of those lemmas in the following section.

Theorem 4. Let P be a protocol which computes AND(u, v) with probability at least 1 − ε. Let
((U, V ), D) ∼ ζ. Then

I(UV ;P (U, V )|D) ≥ 1

4
(1− 2

√
ε).

To begin analyzing this, we expand the quantity on the right to make it easier to work with.
Let Z ∈ {0, 1} be uniformly random. Then by definition

I(UV ;P (U, V )|D) =
1

2
I(UV ;P (U, V )|D = a) +

1

2
I(UV ;P (U, V )|D = b)

=
1

2
I(Z;P (0, Z)) +

1

2
I(Z;P (Z, 0)).

For (u, v) ∈ {0, 1}2, let puv denote the distribution of transcripts when running P (u, v). The
next step is to relate these mutual information quantities to distances between distributions. The
distance which will be convenient for us to use is the Hellinger distance.
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Definition 5. The squared Hellinger distance between two probability distributions p, q over domain
X is defined by

h2(p, q) = 1−
∑
x∈X

√
p(x)q(x) =

1

2

∑
x∈X

(
√
p(x)−

√
q(x))2.

Lemma 6 (Hellinger Lower Bound). Let P be a protocol computing AND with probability at least
1− ε. Then for Z ∈ {0, 1} uniform,

I(Z;P (0, Z)) ≥ h2(p00, p01) and I(Z;P (Z, 0)) ≥ h2(p00, p10).

Continuing our calculation,

I(UV ;P (U, V )|D) =
1

2
I(Z;P (0, Z)) +

1

2
I(Z;P (Z, 0))

≥ 1

2
h2(p00, p01) +

1

2
h2(p00, p10)

≥ 1

4
(h(p00, p01) + h(p00, p10))

2 Cauchy-Schwarz

≥ 1

4
h2(p01, p10) Triangle Inequality

At this point, it is not clear why we should expect the distance between p01 and p10 to be large,
as both are 0-inputs to the AND function. This is the point where we exploit the fact that these
are distributions over transcripts, and that the set of inputs resulting in any given transcript is a
rectangle:

Lemma 7 (Cut-and-Paste Lemma). Let P be a randomized protocol over X × Y . Then for every
x, x′ ∈ X and every y, y′ ∈ Y , we have h(Pxy, Px′,y′) = h(Px,y′ , Px′,y).

Applying the Cut-and-Paste Lemma lets us conclude that

I(UV ;P (U, V )|D) ≥ 1

4
h2(p00, p11).

And now, we should expect to be done, because any accurate protocol for AND must induce
very different distributions on (0, 0) ∈ AND−1(0) and (1, 1) ∈ AND−1(1). Indeed, we have

Lemma 8 (Distinguishing Lemma). If P computes a function f with probability 2/3 on every input,
and (x, y) and (x′, y′) are inputs such that f(x, y) 6= f(x′, y′), then

h2(pxy, px′y′) ≥ 1− 2
√
ε.

This allows us to conclude the proof of Theorem 4.

4 Deferred Proofs

“Proof” of Hellinger Lower Bound Lemma 6. The statement is true as given, but the proof is more
complicated and requires introducing a few more information-theoretic quantities. We will prove
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the weaker statement that if Z ∈ {0, 1} is uniform and if P is a randomized function on one bit,
then

I(Z;P (Z)) ≥ log e

2
h2(p, q),

where p is the distribution of P (Z) and q0 and q1 are the distributions of P (0) and P (1) respectively.
For any pair of distributions q, p, we have

D(q‖p) = −
∑
T

q(T ) log
p(T )

q(T )

≥
∑
T

q(T ) · (2 log e)

(
1−

√
p(T )

q(T )

)
since ln y ≤ y − 1

= 2(log e)h2(q, p)

For any random variables X,Y with joint distribution p, we may write

I(X;Y ) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
=
∑
y

p(y)
∑
x

p(x|y) log

(
p(x|y)

p(x)

)
= Ey∼YD(p(·|y)‖p).

Hence

I(Z;P (Z)) = Ez∼ZD(qz‖p)

=
1

2
(D(q0‖p) +D(q1‖p))

≥ log e · (h2(q0, p) + h2(q1, p))

≥ log e

2
(h(q0, p) + h(q1, p))

2 by Cauchy-Schwarz

≥ log e

2
h2(q0, q1) by Triangle Inequality.

Proof of Cut-and-Paste Lemma 7. Let P be a private coin protocol and let pxy denote the distri-
bution on transcripts when P is run on (x, y). Recall that for any P , we can, for every transcript
T , decompose Pr[P (x, y) = T ] = qA(x, T ) · qB(y, T ) for some functions qA, qB.

Then

1− h2(pxy, px′y′) =
∑
T

√
Pr[P (x, y) = T ] · Pr[P (x′, y′) = T ]

=
∑
T

√
qA(x, T )qB(y, T )qA(x′, T )qB(y′, T )

=
∑
T

√
Pr[P (x′, y) = T ] · Pr[P (x, y′) = T ]

= 1− h2(px′y, px′y).
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Proof of Distinguishing Lemma 8. We’ll actually begin by showing that pxy and px′,y′ are far in
total variation distance, where we recall that the total variation distance between two distributions
p, q over T is

TV (p, q) = max
S⊆T

(p(S)− q(S)) =
1

2

∑
T∈T
|p(T )− q(T )|.

Let S be the set of transcripts on which P outputs f(x, y). Then pxy(S) ≥ 1− ε and px′y′(S) ≤ ε.
Hence TV (pxy, px′y′) ≥ 1− 2ε.

Now we relate total variation distance to Hellinger distance as follows:

TV 2(p, q) =
1

4

(∑
T

|p(T )− q(T )|

)2

=
1

4

(∑
T

(
√
p(T ) +

√
q(T ))(

√
p(T )−

√
q(T ))

)2

≤ 1

4

(∑
T

(
√
p(T ) +

√
q(T ))2

)(∑
T

(
√
p(T )−

√
q(T ))2

)
Cauchy-Schwarz

≤ 1

2
h2(p, q) ·

(
2 + 2

∑
T

√
p(T )

√
q(T )

)
= h2(p, q)(2− h2(p, q)).

This allows us to conclude that h2(p, q) ≥ 1− 2
√
ε.
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