
CS 599B: Math for TCS, Spring 2022

Homework 1
Due: 10:00PM, Friday February 25, 2022 on Gradescope.

Instructions. Solutions must be typeset, with LATEX strongly preferred. You are encour-
aged to collaborate on the homework problems with each other in small groups (2-4 people).
Collaboration may include brainstorming or exploring possible solutions together on a white-
board, but should not include one person telling the others how to solve a problem. You
must also write up the solutions independently (in your own words) and acknowledge your
collaborators at the beginning of the first page.

You may freely use without proof any results proved in class, in Mark’s lecture notes
posted on the class webpage, or in the main body of the texts assigned as reading. Note
that this excludes results that appear in the texts as problems and exercises. You may, of
course, use such results but you have to prove them first.

Problem 1 (Uncertainty principle, O’Donnell 3.15). For a function f : {−1, 1}n → R, define
its Boolean sparsity to be sp(f) = | supp(f)| = |{x | f(x) ̸= 0}|. Similarly, define its Fourier
sparsity by sp(f̂) = | supp(f̂)| = |{S | f̂(S) ̸= 0}|.

a) Show that for every S ⊆ [n], we have |f̂(S)| ≤ ∥f∥1 := Ex [|f(x)|].

b) Show that

∥f̂∥22 :=
∑
S⊆[n]

f̂(S)2 ≤ sp(f̂) · ∥f∥21.

c) Show that
∥f∥22 := E

x∼{−1,1}n

[
f(x)2

]
≥ 2n · ∥f∥21/ sp(f).

d) Deduce the “uncertainty principle”: For every nonzero function f : {−1, 1}n → R, we
have sp(f) · sp(f̂) ≥ 2n.

e) When is the uncertainty principle tight? Justify your answer.

Problem 2 (Hardness amplification). A central topic in average-case complexity is hardness
amplification: Can a function f that is mildly hard on average, e.g., there is no small circuit
that computes f correctly for 99.9% of inputs, be generically transformed into a function
F that small circuits cannot predict much better than random guessing, e.g., 50.1%? An
example of such a result is Yao’s XOR lemma, which says that if circuits of size s can
compute f with probability at most 1 − δ, then circuits of size ≲ s(1 − 2δ)k can compute
f ⊕ · · · ⊕ f︸ ︷︷ ︸

k times

with probability at most 1/2 + (1− 2δ)k.

Noise sensitivity turns out to be an important tool for our understanding of hardness
amplification for relatively weak classes like NP. That is, we would like to understand

1

whether mildly hard functions in NP can be transformed into extremely hard functions that
are still in NP. The XOR lemma doesn’t help here, since the XOR of two NP languages
is not necessarily also in NP. In this problem, you will fill in some of the details of Healy,
Vadhan, and Viola’s exposition of Trevisan’s proof of O’Donnell’s “Hardness Amplification
within NP” theorem.

Let f : {−1, 1}n → {−1, 1} be a δ-hard function, in that for every small circuit T , we
have Prx[T (x) = f(x)] ≤ 1 − δ. We amplify the hardness of f using functions of the form
(C ◦ fk) : ({−1, 1}n)k → {−1, 1} defined by (C ◦ fk)(x1, . . . , xk) = C(f(x1), . . . , f(xk)),
where C : {−1, 1}k → {−1, 1} is a combining function. The first step is to reduce the study
of the computational hardness of C ◦ fk to the information-theoretic hardness of a related
object C ◦ gk where g is a probabilistic function.

A probabilistic function is a randomized algorithm h : {−1, 1}n → {−1, 1}. It may help
to think of h as a function of two inputs: a normal input x ∈ {−1, 1}n and a random input
r ∈ R for some sample space R. So on a fixed input x, the expression E[h(x)] is shorthand
for Er∼R [h(x; r)].

For a probabilistic function h : {−1, 1}n → {−1, 1}, define

ExpBias(h) = E
x∼{−1,1}n

[∣∣∣∣E [h(x)]

∣∣∣∣]
a) Show that the expected bias of a probabilistic function h characterizes the ability of any

(even computationally unbounded) device to compute h:

max
T :{−1,1}n→{−1,1}

Pr[T (x) = h(x)] =
1

2
+

1

2
ExpBias(h).

If g is a balanced function, i.e., Ex [E[g(x)]] = 0 and there exists a set H with |H| = 2δ ·2n
such that a) g(x) is a uniform bit for x ∈ H and b) g is deterministic for every x /∈ H, we say
that g is δ-random. That is, g is (information-theoretically) hard to predict because there is
a 2δ fraction of inputs on which it is completely unpredictable.

Your intuition may suggest that if f is mildly hard, the reason may be different for
different circuits. That is, the place where circuit T1 errs in computing f may be totally
different from the place where circuit T2 errs. Remarkably, Impagliazzo’s hardcore lemma
says that mildly hard functions “look like” δ-random functions to small circuits – the hardness
of every mildly hard function is explained by its being completely unpredictable on a small
set of inputs to every small circuit. Combining the hardcore lemma with part (a) and a few
other ideas, one can show:

Lemma 1 (Informal). If f is δ-mildly hard for small circuits, then there exists a δ-random
function g such that

Pr[T (x) = (C ◦ fk)(x)] ≤ 1

2
+

1

2
ExpBias(C ◦ gk)

2

for every small circuit T .1

Thus, in order to show that C ◦ fk is extremely hard, it suffices to show that C ◦ gk has
small expected bias for every δ-random g.

b) Define the distribution E2δ over {−1, 1}k as follows. To sample e ∼ E2δ, set each ei
independently to −1 with probability 2δ and to +1 with probability 1 − 2δ. Show that
for every C and every δ-random function g,

ExpBias(C ◦ gk) = E
y∼{−1,1}k

e∼E2δ

[∣∣∣∣ E
z∼{−1,1}k

[C(y ⊕ (e ∧ z))]

∣∣∣∣] .
The expression looks a bit gnarly, but the following should help to interpret it. To sample
the string y ⊕ (e ∧ z), first sample y ∼ {−1, 1}k uniformly. Then choose roughly a 2δ-
fraction of the coordinates specified by e, and re-randomize these coordinates according
to the string z. Note in particular that the pair (y, y ⊕ (e ∧ z)) is (1− 2δ)-correlated.

c) Show that

Stab1−2δ(C) = E
y∼{−1,1}k

e∼E2δ

[
E

z,w∼{−1,1}k
[C(y ⊕ (e ∧ z)) · C(y ⊕ (e ∧ w))]

]
.

d) Combine parts (b) and (c) to conclude that

ExpBias(C ◦ gk) ≤
√

Stab1−2δ(C).

e) The last piece of the puzzle is to exhibit combining functions C that have very low noise
stability. The XOR function (parity) is highly noise sensitive, so it has very low noise
stability. Use part (d) and Lemma 1 to (qualitatively) conclude Yao’s XOR lemma.

As mentioned before, the XOR lemma is not good enough to obtain hardness amplifi-
cation within NP. To address this problem, we want C to be polynomial-time computable
and monotone. By composing the Tribes function with a Recursive-Majority-of-3, O’Donnell
showed:

Lemma 2. For every δ > 0 there exists a k = poly(1/δ) and a poly-time computable
monotone function C : {−1, 1}k → {−1, 1} such that Stab1−2δ(C) ≤ 1/poly(k).

f) Combine part (d), Lemma 1, and Lemma 2 to argue that if a family of functions fn :
{−1, 1}n → {−1, 1} is in NP and (1/poly(n))-hard for small circuits, then there exists
a family of functions Fm : {−1, 1}m → {−1, 1} in NP that cannot be computed with
probability better than 1/2 + 1/poly(m) by small circuits.
1Note that even if we were careful about what “small” means here, statement is not literally true because

of various losses in parameters like δ, the circuit size, and the final upper bound on success probability. But
let’s pretend it’s true to simplify the story.

3

Problem 3 (Bonami variant, O’Donnell 9.34). Prove the following variant of Bonami’s
Lemma: For every f : {−1, 1}n → R,

E[f(x)4] ≤ sp(f̂) · E[f(x)2]2.

Thus, not only are low-degree polynomials reasonable, but sparse polynomials are reasonable
as well.

Problem 4 (Generalizing KKL).

a) Let f : {−1, 1}n → {−1, 1} be computed by a decision tree of depth d. Show the following
improved version of KKL:

MaxInf [f] ≥ Var [f]

d
.

b) Show that the KKL Theorem is false for real-valued functions f : {−1, 1}n → [−1, 1].
(O’Donnell 9.20 – look there if you need a hint.)

A great open problem related to these questions the Aaronson-Ambainis conjecture: For any
f : {−1, 1}n → [−1, 1], we have MaxInf [f] ≥ poly(Var [f] / deg(f)).

4

