
CS 599B: Math for TCS, Spring 2022

Homework 2
Due: 10:00PM, Friday March 25, 2022 on Gradescope.

Instructions. Solutions must be typeset, with LATEX strongly preferred. You are encour-
aged to collaborate on the homework problems with each other in small groups (2-4 people).
Collaboration may include brainstorming or exploring possible solutions together on a white-
board, but should not include one person telling the others how to solve a problem. You
must also write up the solutions independently (in your own words) and acknowledge your
collaborators at the beginning of the first page.

You may freely use without proof any results proved in class, in Mark’s lecture notes
posted on the class webpage, or in the main body of the texts assigned as reading. Note
that this excludes results that appear in the texts as problems and exercises. You may, of
course, use such results but you have to prove them first.

Problem 1 (Tightness of Braverman’s Theorem). For n ∈ N and ε > 0, let r = log n and
t = log(2/ε). Consider the function f = ORt ◦ XOR⊗t

r . We will regard this as a function
f : {−1, 1}n → {−1, 1}, but note that it depends only on the first rt = (log n) log(2/ε)
inputs.

a) Show that f is computed by a DNF with s = n log(2/ε) terms.

b) Show that Ex∼{−1,1}n [f(x)] = −1 + ε. (Note in particular that this means the Fourier
spectrum of f is (2ε)-concentrated on degree 0.)

c) Show that there is an (rt−1)-wise independent distributionD such that Ex∼D [f(x)] = −1.
(Combined with part (b), this separates sandwiching approximations from ℓ2 approxima-
tions.)

d) Conclude that for some constant c > 0, depth-2 circuits of size s are not fooled by
(c log s · log(1/ε))-wise independence.

e) Generalize this argument to show that for every d ∈ N, there exists a constant cd such
that depth-d circuits of size s are not fooled by (cd(log s)

d−1 · log(1/ε))-wise independence.
Hint: You can use without proof the fact that XORr is computed by a depth-d circuit of
size 2r

1/(d−1)
poly(r); but I encourage you to think about how to prove this fact!

Problem 2 (Closeness to k-wise independence). In this problem, you will explore the re-
lationships between various forms of “almost” k-wise independence and their consequences
for derandomization.

a) Suppose X ∈ {−1, 1}n is δ-almost k-wise independent as in Lecture 9, Definition 10.
Show that low-degree parities of X are approximately unbiased: for every |S| ≤ k, we
have |E[χS(X)]| ≤ 2δ.
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b) Use part (a) to show that if X is δ-almost k-wise independent, then there exists an actual
k-wise independent distribution Y such that TV (X, Y ) ≤ δ ·O(nk). Hint: Take a convex
combination of X with distributions that look like PS = U({x ∈ {−1, 1}n | χS(x) = 1}).

c) Use part (b) and Braverman’s Theorem to show that εlog
O(d) s-biased distributions ε-fool

size-s, depth-d circuits. (You can assume that the size s of a circuit is larger than its
number of inputs n.)

d) Show that ifX ∈ {−1, 1}n is k-wise independent for even k, thenH∞(X) ≥ k log(2
√
n/k).

Hint: You can use without proof the result of Exercise Set 4, Problem 1 on the Chernoff
bound with limited independence. You might also want to use the fact that if X is k-wise
independent, then so is X ⊕ y for every constant y ∈ {−1, 1}n.

e) Use part (d) to show that part (b) is nearly tight in the following sense: For k ≤ n1/4, there
exists an n−O(k)-almost k-wise independent distribution X such that TV (X, Y ) ≥ 1/2 for
every k-wise independent Y . Hint: How close can a distribution with high min-entropy
be to one with small support?

Problem 3 (Error reduction for polynomials).

a) Let k be odd, and let Ak(x) =
∑

S⊆[k] asχS(x) be the Fourier representation of MAJk.

Show that if ρ ∈ {−1, 1, ⋆} is a restriction there exists b ∈ {±1} with ρi = b for more
than k/2 indices i, then Ak|ρ is the constant polynomial b.

b) An ε-probabilistic polynomial for a function f : {−1, 1}n → {−1, 1}n is a distribution P
over degree-d polynomials p : {−1, 1}n → R such that for all x ∈ {−1, 1}n,

Pr
p∼P

[p(x) ̸= f(x)] ≤ ε.

Show that if P is a 1/3-probabilistic polynomial for f of degree d, then for k = O(log(1/ε)),
the distribution Q over polynomials q defined by q(x) = Ak(p1(x), . . . , pk(x)) where
p1, . . . , pk are sampled i.i.d. from P is an ε-probabilistic polynomial for f of degree
kd = O(d log(1/ε)).
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