
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 1:

Basics of Boolean Fourier Analysis

Reading.

• O’Donnell, Analysis of Boolean Functions §1.1-1.4

1 Course information

The purpose of the class is to study a handful of mathematical techniques that appear all the time in research
in algorithm design and complexity theory. The tentative list of course units is:

1. Analysis of Boolean functions

2. Pseudorandomness

3. Spectral graph theory

4. Codes, information, and communication

5. Ramsey theory, extremal and additive combinatorics

6. Linear and semidefinite programming

This class is meant to satisfy the algorithms/theory depth requirement, so there’s a lower bound on your
deliverables. The course components are 1) Weekly exercise sets. We’ll try to find a convenient time to
reserve a room for you to break into small groups to work on these. 2) More thinking-intensive problem sets
(about 4-5 throughout the semester). 3) A course project. 4) Class participation.

Things you should do are: Sign up for Piazza using the code [redacted]. Be on the lookout for a poll for
office hours and for the weekly exercise session.

2 Boolean functions

A Boolean function is a mapping f : {−1, 1}n → {−1, 1}. A typical convention is to interpret +1 as
logical false and −1 as logical true. This isn’t essential, but as we’ll see it’s generally useful for doing
and interpreting calculations. It’s also often helpful to consider the more general class of functions with
codomain R.

A simple example of a Boolean function is the 3-bit majority function MAJ3 : {−1, 1}3 → {−1, 1}
defined by MAJ3(x1, x2, x3) = 1 iff at least two of the input bits are equal to 1. Our study of Boolean
functions is guided by two principles.
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Principle 1: Boolean functions are everywhere.

• In circuit complexity, f captures the truth table of a circuit with n inputs and 1 output.

• In machine learning, f is a classification rule that takes n binary features and outputs a true/false label.

• In social choice theory, f is a voting rule taking n votes for two possible candidates to an election
outcome.

• In combinatorics, f is the indicator of a subset S = {x ∈ {−1, 1}n | f(x) = −1} of the Boolean hy-
percube. It can also be thought of as the indicator for a “set system” F of subsets of [n] = {1, . . . , n},
defined by X ∈ F ⇐⇒ f(x) = −1, where x is the indicator vector for X .

Principle 2: Every Boolean function is a polynomial. We’ll start with an example to convince ourselves
why this is true. Write

MAJ3(x) =
∑

v∈{−1,1}3
MAJ3(v) · 1{v}(x)

where 1{v}(x) = 1 if x = v and 1{v}(x) = 0 if x ̸= v. For every v, the indicator function 1{v}(x) is a
polynomial in x:

1{v}(x) =

(
1 + v1x1

2

)
·
(
1 + v2x2

2

)
·
(
1 + v3x3

2

)
.

So MAJ3 is a sum of polynomials, hence itself a polynomial. Somewhat more explicitly:

MAJ3(x) = (1) ·
(
1 + x1

2

)
·
(
1 + x2

2

)
·
(
1 + x3

2

)
+ (1) ·

(
1 + x1

2

)
·
(
1 + x2

2

)
·
(
1− x3

2

)
+ (−1) ·

(
1 + x1

2

)
·
(
1− x2

2

)
·
(
1− x3

2

)
+ . . .

It’s a bit tedious, but if you expand this out and collect terms, you get MAJ3(x) =
1
2(x1 + x2 + x3 −

x1x2x3). We can generalize this construction to any Boolean function by writing

f(x) =
∑

v∈{−1,1}n
f(v) · 1{v}(x).

Some remarks are in order. First, this polynomial is multilinear, meaning each individual appears with
degree at most 1, i.e., there are no terms like x21, x

3
1, etc. This implies that the total degree of the polynomial

is n. This property is actually without loss of generality, since on domain {−1, 1} we can always replace
any factor x2i with 1.

Second, there is nothing special about taking the codomain of f to be {−1, 1}. This construction works
just as well for any function f : {−1, 1}n → R. We are thus most of the way toward proving the following:

Theorem 1. Every function f : {−1, 1}n → R has a unique representation as a multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where χS(x) =
∏

i∈S xi.
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Here we are using the convention that χ∅(x) = 1. The quantities f̂(S) are called the “Fourier coeffi-
cients” of f , and the collection (f̂(S))S⊆[n] is called the “Fourier transform” of f .

Example 2. The Fourier coefficients of MAJ3 are M̂AJ3({1}) = M̂AJ3({2}) = M̂AJ3({3}) = 1/2, M̂AJ3({1, 2, 3}) =
−1/2, and M̂AJ3(S) = 0 otherwise.

Example 3. Define the function XORn(x) = −1 iff an odd number of the inputs x1, . . . , xn are equal to
−1. The Fourier coefficients of XORn are X̂ORn([n]) = 1 and X̂ORn(S) = 0 otherwise.

Thus, the way to think about each monomial χS(x) is as the parity of the subset of bits indexed by S.

3 Linear algebra of the Fourier representation

Some basic questions to ask about the Fourier representation are: What does it mean? How do we compute
it? What is it good for? We’ll start developing some tools for understanding it now. The basic perspective
we’ll take is that the set of functions Fn = {f : {−1, 1}n → R} is a 2n-dimensional real vector space. We
can equip this vector space with the following inner product.

Definition 4. For functions f, g : {−1, 1}n → R, define the inner product

⟨f, g⟩ = 2−n
∑

x∈{−1,1}n
f(x)g(x) = E

x∼{−1,1}n
[f(x)g(x)] .

You can check that this satisfies the definition of a real inner product (symmetry, bilinearity, positive
definiteness). The inner product has a natural interpretation as the correlation or average agreement between
f and g. If f and g are Boolean functions that are perfectly correlated (f = g), then ⟨f, g⟩ = 1. If they are
perfectly anti-correlated (f = −g), then ⟨f, g⟩ = −1.

Lemma 5. The parity functions satisfy

⟨χS , χT ⟩ =

{
1 if S = T

0 if S ̸= T.

Thus, the set of 2n parity functions {χS(x) | S ⊆ [n]} form an orthonormal basis for the vector space
Fn. In particular, that means they are linearly independent. This implies the “uniqueness” part of Theorem 1.

Proof. We calculate

⟨χS , χT ⟩ = E
x∼{−1,1}n

[χS(x)χT (x)]

= E
x∼{−1,1}n

[χS∆T (x)]

We now consider two cases. If S = T , so S∆T = ∅, the quantity under the expectation is the constant 1. If
S ̸= T , then by independence we have

E
x∼{−1,1}n

[χS∆T (x)] =
∏

i∈S∆T

E
xi∼{−1,1}

[xi] = 0.
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If you like to do linear algebra using matrices, then you can think of the Fourier representation of a
function f as

f(+,+, . . . ,+)
f(−,+, . . . ,+)

...
f(−,− . . . ,−)

 =


χ∅(+,+, . . . ,+) χ{1}(+,+, . . . ,+) . . . χ[n](+,+, . . . ,+)

χ∅(−,+, . . . ,+) χ{1}(−,+, . . . ,+) . . . χ[n](−,+, . . . ,+)
...

χ∅(−,−, . . . ,−) χ{1}(−,−, . . . ,−) . . . χ[n](−,−, . . . ,−)


︸ ︷︷ ︸

H[x,S]


f̂(∅)

f̂({1})
...

f̂([n])



The matrix H[x, S] is the “Hadamard matrix” of order 2n. The Fourier transform over the Boolean hyper-
cube is sometimes also called the “Walsh-Hadamard transform.”

Taking this perspective has the useful consequence that it tells us how to compute Fourier coefficients.
Lemma 5 implies that HHT = 2nI2n , and so H−1 = 2−nHT . Unpacking this, we get

Lemma 6. For every function f : {−1, 1}n → R and every S ⊆ [n],

f̂(S) = 2−n
∑

x∈{−1,1}n
f(x)χS(x) = ⟨f, χS⟩.

You can also just directly verify this expression by using the Fourier expansion of f and orthonormality
to compute ⟨f, χS⟩ and show that it’s equal to f̂(S).

Orthonormality of the parity functions lets us prove several other elegant properties.

Proposition 7 (Plancharel’s Identity). For any f, g : {−1, 1}n → R,

⟨f, g⟩ =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof.

⟨f, g⟩ =
〈 ∑
S⊆[n]

f̂(S)χS ,
∑
T⊆[n]

ĝ(T )χT

〉
=

∑
S,T⊆[n]

f̂(S)ĝ(T )⟨χS , χT ⟩ by linearity

=
∑
S⊆[n]

f̂(S)ĝ(S) by orthonormality.

The special case of Plancharel where g = f gives us

Proposition 8 (Parseval’s Theorem). For any f : {−1, 1}n → R,

E
x∼{−1,1}n

[
f(x)2

]
= ⟨f, f⟩ =

∑
S⊆[n]

f̂(S)2.

In the case where f is Boolean, this shows that the sum of squared Fourier coefficients is equal to 1.
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