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Bounded Independence Fools AC0

Reading.

• Braverman, “Poly-logarithmic independence fools AC0.”

• See also: Tell, “The Bazzi-Razborov-Braverman Theorems” https://sites.google.com/
site/roeitell/Expositions

Today, we’ll explore the power of k-wise independent distributions to fool relatively complex functions.
Recall:

Definition 1. A distribution D over {−1, 1}n is said to ε-fool a function f : {−1, 1}n → {−1, 1} if

| E
x∼D

[f(x)]− E
x∼U

[f(x)] | ≤ ε.

We saw that k-wise independent distributions 0-fool degree-k polynomials, which include depth-k deci-
sion trees. How far can we push this? Depth-k decision trees are computed by size 2k k-DNF and by k-CNF
(i.e., DNF and CNF formulas where each bottom gate has arity k). Can we show that bounded independence
fools small DNF/CNF? Or more ambitiously, small circuits of bounded depth?

Some intuition for why this may be true comes from the LMN polynomial approximation theorem that
we saw when we studied the learnability of small circuits under the uniform distribution:

Theorem 2 (Tal’s strengthening of LMN). Let f be computed by an {∧,∨,¬} circuit of size s and depth d.
Then there exists a polynomial p : {−1, 1}n → R of degree O(logd−1(s) log(1/ε)) such that E[(f − p)2] ≤
ε.

That is, every size-s depth-d circuit C is approximated by a k = O(logd−1(s))-degree polynomials, so
we should expect any k-wise independent distribution to (approximately) fool C. Related observations led
Linial and Nisan to conjecture, around 1990, that size-s depth-d circuits are fooled by O(logd−1(s))-wise
independence.

It took about 20 years for this conjecture to turn into a theorem, which will be the main point of today’s
discussion:

Theorem 3 (Braverman’s Theorem). Every size-s depth-d circuit is ε-fooled by every k-wise independent
distribution with

k = (log s)O(d) · log(1/ε).

Historical note: Essentially no progress was made on this question until 2007, when Bazzi [?] proved
the result for DNF in a 53-page tour de force. Razborov then dramatically simplified the proof [?]. In 2009,
Braverman proved the result for general AC0 circuits obtaining the bound k = (log(s/ε))O(d2). This was
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subsequently improved by Tal [?] to (log(s/ε))3d+3 and by Harsha and Srinivasan [?] to the result stated
above. Note that the latter two results are technically incomparable because of the constant hiding in the big-
O. Linial and Nisan’s conjectured bound of O(logd−1(s) log(1/ε)) is unbeatable due to a counterexample
by Mansour [?].

1 Sandwiching Polynomials

Given our intuition that low-degree approximability should correspond to approximate fooling by bounded
independence, it’s instructive to see why we can’t immediately conclude Theorem 3 from Theorem 2. Sup-
pose f is approximated in ℓ2-distance by a degree-k polynomial, in that Ex∼Un [(f(x) − p(x))2] ≤ ε for p
of degree k. We’d like to be able to show that |E[f(D)]− E[f(Un)]| ≤ poly(ε) for any k-wise independent
D. The natural thing to do is to try to break this up as

|E[f(D)]− E[f(Un)]| ≤ |E[f(D)]− E[p(D)]|︸ ︷︷ ︸
(1)

+ |E[p(D)]− E[p(Un)]|︸ ︷︷ ︸
(2)

+ |E[p(Un)]− E[f(Un)]|︸ ︷︷ ︸
(3)

.

Term (2) is zero by k-wise independence. Term (3) is at most
√
ε by applying the triangle inequality and

Cauchy-Schwarz:

|E[p(Un)]− E[f(Un)]| ≤ Ex∼Un [|f(x)− p(x)|] ≤ Ex∼Un [(f(x)− p(x))2]1/2 ≤
√
ε.

But we seem to be stuck with term (1). We want to be able to control this quantity for an arbitrary k-wise
independent distribution, but one could be adversarially chosen to place most of its weight on the points
where, say, f(x) = 1 and p(x) = −1.

One of Bazzi’s key insights was to show that a stronger form of polynomial approximation rules out this
possibility. Specifically, he showed that if f is approximated from above and below by a pair of “sandwich-
ing polynomials” then it is fooled by bounded independence.

Lemma 4 (Bazzi). Suppose there are degree-k polynomials pℓ, pu : {−1, 1}n → R such that

1. pℓ(x) ≤ f(x) ≤ pu(x) for all x ∈ {−1, 1}n, and

2. Ex∼Un [pu(x)− f(x)] ≤ ε and Ex∼Un [f(x)− pℓ(x)] ≤ ε.

Then f is ε-fooled by k-wise independence.

Proof. As before, but without absolute values, we write

E[f(D)]− E[f(Un)] = E[f(D)]− E[pu(D)]︸ ︷︷ ︸
(1)

+E[pu(D)]− E[p(Un)]︸ ︷︷ ︸
(2)

+E[pu(Un)]− E[f(Un)]︸ ︷︷ ︸
(3)

.

The second term is again 0, and the third term is at most ε. But now because pu is an upper bound on f , we
have that the first term is nonpositive. Hence

E[f(D)]− E[f(Un)] ≤ ε.

Similarly, we can use the lower sandwiching polynomial to show that E[f(Un)] − E[f(D)] ≤ ε. Thus,
|E[f(D)]− E[f(Un)]| ≤ ε for every k-wise independent D.

Bazzi’s Lemma has a converse which gives a complete characterization of foolability by bounded inde-
pendence. It can be proved using linear programming duality.
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2 Approximating AC0

Our goal now is to show that every small, low-depth circuit is approximated by a pair of sandwiching
polynomials. It suffices to show that every such circuit has a “lower sandwich” since AC0 is closed under
negation: If p is a a lower sandwich for −f , then −p is an upper sandwich for f .

Even though Bazzi’s Lemma turns out to completely characterize foolability, there seems to be some
wiggle room. For one, we really only needed the lower sandwich to satisfy E[pℓ(D)] − E[f(D)] < 0; in
particular, it may be easier to guarantee this weaker condition if we let pℓ depend on the distribution D.
Second, we don’t necessarily need to sandwich f itself. By the triangle inequality, it would be enough to
sandwich a different function f ′ which we know to be close to f under both the uniform distribution and
under D. These observations are captured in the following lemma.

WARNING: To break symmetry in discussing one-sided error approximations, we are switching from
{−1, 1} notation to {0, 1} notation. The transformation f(x1, . . . , xn) 7→ g(y) = 1− 2f(1− 2y1, . . . , 1−
2yn) shows that this changes nothing meaningful.

Lemma 5. Let f : {0, 1}n → {0, 1}. Suppose that for every k-wise independent distribution D, there exists
a Boolean function f ′ : {0, 1}n → {0, 1} and a degree-k polynomial p such that

1. f ′ approximates f under D and under the uniform distribution: Prx∼D[f(x) ̸= f ′(x)] ≤ ε/3 and
Prx∼Un [f(x) ̸= f ′(x)] ≤ ε/3.

2. p is a lower sandwiching approximation to f ′: p(x) ≤ f ′(x) for all x ∈ {0, 1}n and Ex∼Un [f
′(x)−

p(x)] ≤ ε/3.

Then E[f(Un)]− E[f(D)] ≤ ε.

Proof.

E[f(D)] ≥ E[f ′(D)]− ε/3

≥ E[p(D)]− ε/3

= E[p(Un)]− ε/3

≥ E[f ′(Un)]− 2ε/3

≥ E[f(Un)]− ε.

So to show that AC0 is fooled by bounded independence, it is enough to show that every f ∈ AC0 is
approximated by another function f ′ that has a lower sandwiching polynomial approximation.

Theorem 6. Let f be computed by a size-s depth-d circuit. Then for every k-wise independent distribution
D, there exists a Boolean function f ′ : {0, 1}n → {0, 1} and a degree-k polynomial p such that

1. f ′ approximates f under D and under the uniform distribution: Prx∼D[f(x) ̸= f ′(x)] ≤ ε/3 and
Prx∼Un [f(x) ̸= f ′(x)] ≤ ε/3, and

2. p is a lower sandwiching approximation to f ′: p(x) ≤ f ′(x) for all x ∈ {0, 1}n and Ex∼Un [f
′(x)−

p(x)] ≤ ε/3,

where k = (log s)O(d) · log(1/ε).
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The proof of Theorem 6 combines two different kinds of polynomial approximations. The first is the ℓ2
LMN approximation of Theorem 2. The second is a so-called “probabilistic polynomial” approximation.

Lemma 7. For every size-s, depth-d circuit f and every distribution D over {0, 1}n, there exists a polyno-
mial p with Prx∼D[p(x) ̸= f(x)] ≤ ε such that

1. deg p ≤ (log s)O(d) · log(1/ε)

2. maxx∈{0,1}n{|p(x)|} ≤ exp((log s)O(d) · log(1/ε))

3. There exists a size-poly(s), depth-O(d) circuit E such that p(x) ̸= f(x) ⇐⇒ E(x) = 1.

Constructions of these kinds of polynomials go back to work of Razborov, Smolensky, and Tarui in the
late 80’s and early 90’s. They were, for example, used to show that the majority function is not in AC0. The
key observation in Braverman’s work was that these polynomials satisfy condition 3: That the “error region”
on which such a polynomial disagrees with the circuit it’s approximating can itself by detected using a small
circuit. A construction achieving the stated parameters of Lemma 7 was given by Harsha and Srinivasan ??.

Proof. Apply Lemma 7 using distribution 1
2(D + Un) and error parameter ε/8. This gives a polynomial

p0 such that Prx∼D[f(x) ̸= p0(x)] ≤ ε/4 and Prx∼Un [f(x) ̸= p0(x)] ≤ ε/4, as well as a size-poly(s),
depth-O(d) circuit E such that f(x) ̸= p0(x) ⇐⇒ E(x) = 1.

Now invoking Theorem 2, let pE be the ℓ2 approximation to circuit E of degree log(s)O(d) · log(1/δ)
such that E[(E − pE)

2] ≤ δ.
Finally, set f ′ = f ∨ E, q = p0(1 − pE), and our final approximating polynomial p = 1 − (1 −

q)2. Intuitively, we are taking p0 to be our “base” approximation to f ′, with the understanding that p0
occasionally makes wild errors when E(x) = 1. Multiplication by the polynomial (1−pE) serves to mollify
these errors, but may not result in a sandwiching approximation when f ′(x) = 1. Setting p = 1− (1− q)2

forces the final polynomial to be upper bounded by 1.
Let us now check formally that the conditions of Theorem 6 are satisfied for an appropriate choice of δ.

1. Under either the uniform distribution or under D, we have Pr[f(x) ̸= f ′(x)] ≤ Pr[E(x)] =
Pr[f(x) ̸= p0(x)] ≤ ε/4.

2. To show that p is a lower sandwiching approximation to f ′, we’ll first show that q is a “one-sided
error” approximation to f . That is:

Claim 8. f ′(x) = 0 =⇒ q(x) = 0.

To see this, suppose f ′(x) = 0. Then E(x) = 0, so we are not in the mistake set, and hence
p0(x) = f(x) = 0. So q(x) = 0 as well.

Claim 9. ∥f ′ − q∥2 ≤
√

ε/4 + exp(log(s)O(d) · log(1/ε)) ·
√
δ ≤

√
ε/3 by taking δ = ε ·

exp(− log(s)O(d) · log(1/ε)).

To see this, we use the triangle inequality to bound

∥f ′ − q∥2 ≤ ∥f ′ − p0(1− E)∥2 + ∥p0(1− E)− q∥2.

For the first term,
∥f ′ − p0(1− E)∥2 ≤

√
Pr[E(x) = 1] ≤

√
ε/3.
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For the second term, we write p0(1 − E) − q = p0(pE − E). Using the fact that maxx{|p(x)|} ≤
exp(log(s)O(d) · log(1/ε)), we get

∥p0(1− E)− q∥2 ≤ exp(log(s)O(d) · log(1/ε)) · ∥pE − E∥2 ≤ exp(log(s)O(d) · log(1/ε)) ·
√
δ.

We’ll now use these two claims to show that p is a lower sandwiching approximation. First, it is a
pointwise lower bound on f ′ by the following reasoning. If f ′(x) = 0, then by Claim 8, we have
q(x) = 0 so p(x) = 0. On the other hand, if f ′(x) = 1, then p(x) ≤ 1 by construction.

Now to show that p approximates f ′, we observe that:

• If f ′(x) = 0, then p(x) = 0 so there is no error.

• If f ′(x) = 1, then f ′(x)− p(x) = (1− q(x))2 = (f ′(x)− q(x))2.

Hence, ∥f ′ − p∥1 ≤ ∥f ′ − q∥22 ≤ ε/3.

Finally, note that the degree of p is (log s)O(d)·log(1/ε)+(log s)O(d)·log(1/δ) where δ = exp(−(log s)O(d)·
log(1/ε)). This gives a total degree bound of (log s)O(d) · log(1/ε).
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