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More on extractors, Nisan’s PRG

Reading.

• Vadhan, Sections 6.1, 6.2.1

• Avishay Tal’s notes:
https://drive.google.com/file/d/1DXdmCAf6rqARVFwFx4h6kpI1Mk2a4iJN/view

Last time, we defined an extractor as a function that takes a single sample from a weak random source,
and outputs a near-uniform sample.

Definition 1. A deterministic extractor for a class C of sources over {0, 1}n is a function Ext : {0, 1}n →
{0, 1}m if TV (Ext(X),Um) ≤ ε for every X ∈ C.

We also saw that a necessary condition for an extractor to produce m (exactly) uniform bits is that the
source has min-entropy at least m.

Definition 2. The min-entropy of a source X is

H∞(X) = min
x∈supp(X)

log
1

Pr[X = x]
.

One way to think about log(1/Pr[X = x]) is as a measure of how surprising it is to observe the
outcome X = x. The lower the probability of an outcome, the more surprising it is. If a source has high
min-entropy, that means every outcome is somewhat surprising. Shannon entropy, which is the same thing as
min-entropy but where the minx sin supp(X) is replaced by Ex∼X , by contrast measures the average surprisal
of an outcome x ∼ X . The two measures coincide when X is the uniform distribution, but differ on non-
uniform distributions. Min-entropy is a lower bound on Shannon entropy and is thus a more conservative
estimate for how much randomness is present in a source X .

Definition 3. An (n, k) source is a random variable X on {0, 1}n such that H∞(X) ≥ k. Equivalently,
Pr[X = x] ≤ 2−k for all x ∈ {0, 1}n.

Some examples of (n, k) sources include:

• Von Neumann sources. n i.i.d. bits each with bias δ < 1/2 comprise an (n, k) source for k =
n log(1/(1− δ)).

• Bit-fixing sources. An oblivious bit-fixing source is one where k bits are chosen uniformly at random,
at the rest are fixed to constants. A non-oblivious bit-fixing source is where k bits are chosen at
random, and the rest are chosen depending on the outcomes of those k bits.
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• Flat sources. These are distributions which are uniform over a subset S ⊆ {0, 1}n of size |S| = 2k.
You can think of flat sources as the building blocks of general (n, k) sources, in the sense that every
(n, k) source is a convex combination (mixture) of flat sources.

We’d like to be able to construct extractors for the class of all (n, k) sources. Unfortunately, this still
turns out to be impossible using our definition of deterministic extractors:

Claim 4. For any Ext : {0, 1}n → {0, 1}, there exists an (n− 1)-source X such that Ext(X) is constant.

Proof. Since |Ext−1(0)| + |Ext−1(1)| = 2n, there exists a b ∈ {0, 1} such that |Ext−1(b) | ≥ 2n−1. Let
X be the uniform distribution on Ext−1(b).

Faced with this impossibility result, there are a few workarounds. One, of course, is to restrict our
attention to structured classes of (n, k) sources, such as bit-fixing sources or sources exhibiting algebraic
structure (e.g., dimension-k affine subspaces of Fn

2 ). Another is to consider extractors for two or several
independent (n, k) sources. We will focus on seeded extractors, which take as input an (n, k) source as well
as an independent (and ideally short) d-bit seed of uniform randomness, and output a long string of ≈ k+ d
bits of uniform randomness.

1 Seeded Extractors

Definition 5. A (k, ε)-seeded extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m such that
TV (Ext(X,Ud),Um) ≤ ε for every (n, k) source X .

The parameters that tell us how good a seeded extractor are the seed length d and the output length m.
We want to minimize d and maximize m. Note that achieving m = d is easy by just outputting the seed.
For a given d, we want to be able to take m as close as possible to d+ k.

One can use the probabilistic method to show that a randomly chosen function is a (k, ε)-extractor when

d = log(n− k) + 2 log(1/ε) +O(1), m = d+ k − 2 log(1/ε)−O(1).

These parameters are excellent if our goal is to simulate randomized algorithms using a weak random
source. Since the seed length is logarithmic, we can perform a partial derandomization by enumerating over-
all possible seeds and taking a majority vote. The challenge is to construct explicit, efficiently computable
extractors matching this bound.

There are several explicit constructions of extractors nearly matching these bounds based on expanders,
error-correcting codes, and PRGs. We don’t yet have the tools to construct these extractors, but we can
present a simple and important one based only on pairwise independence.

Definition 6. A family of “hash” functions H = {hr : {0, 1}n → {0, 1}t | r ∈ {0, 1}d} is pairwise
independent if for every x ̸= x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}t,

Pr
r∼{0,1}d

[hr(x) = y ∧ hr(x
′) = y′] = 2−2t.

In other words, the random variables (hr(x))x∈{0,1}n , for r ← {0, 1}d, are pairwise independent. Recall
that we can sample such hash functions using seed length d = 2max{n, t}.
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Theorem 7 (Leftover Hash Lemma). LetH be a pairwise independent hash family where t = k−2 log(1/ε).
Then

Ext(x, r) = (r, hr(x))

is a (k, ε)-seeded extractor.

Note that this extractor has very poor seed length d = O(n), where as the probablistic method tells us
we can achieve seed length O(log(n/ε)). However, the rate of extraction m = d+ t = d+ k − 2 log(1/ε)
is optimal.

Proof. We will actually show something stronger, that Ext is an extractor with respect to collision proba-
bility. That is, the probability that two independent samples from Ext collide is roughly the same as the
probability that two uniform samples collide. More precisely:

Definition 8. The collision probability of a distributionD is C(D) = PrZ,Z′∼D[Z = Z ′] =
∑

z∈supp(D)D[z]2.

Note that the collision probability of the uniform distribution on m bits is C(Um) = 2−m. The collision
probability of any (n, k) source X is at most

∑
x∈supp(X) Pr[X = x]2 ≤ (maxx Pr[X = x])

∑
x Pr[X =

x] = 2−k.
Putting the following two lemmas together proves the claim.

Lemma 9. For any distribution D on {0, 1}m, we have TV (D,Um) ≤ 2−m/2−1
√
C(D)− 2−m.

Lemma 10. If X is an (n, k) source, then C(Ext(X,Ud)) ≤ 1+ε2

2m .

Proof of Lemma 9. Let p be the 2m-dimensional vector representing the probability mass function ofD, and
let u = (2−m, . . . , 2−m) be the vector representing the uniform distribution. Then

TV (D,Um) =
1

2
∥p− u∥1

≤
√
2m

2
∥p− u∥2 by Cauchy-Schwarz

≤ 2−m/2−1
√ ∑

z∈{0,1}m
(pz − 2−m)2

≤ 2−m/2−1

√∑
z

p2z − 2
∑
z

2−mpz +
∑
z

2−2m

≤ 2−m/2−1

√√√√(∑
z

p2z

)
− 2−m.

Noting that C(D) =
∑

z p
2
z completes the proof.
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Proof of Lemma 10. We estimate

C(Ext(X,Ud)) = Pr
r,r′∼{0,1}d
x,x′∼X

[(r, hr(x)) = (r′, hr′(x
′))]

= 2−d Pr
r∼{0,1}d,x,x′∼X

[hr(x) = hr(x
′)]

≤ 2−d
(
Pr[x = x′] + Pr[hr(x) = hr(x

′) | x ̸= x′]
)

≤ 2−d(2−k + 2−t).

The last inequality holds because H∞(X) ≥ k implies that the collision probability as at most 2−k, and by
pairwise independence. Taking k = t+ 2 log(1/ε) makes this (1 + ε2)2−(d+t) as we wanted.

2 Nisan’s PRG

The leftover hash lemma illustrates how PRG technology can be used to construct extractors. Nisan’s PRG
is an important example of a construction that goes in the opposite direction. It uses a seeded extractor to
construct a PRG that fools space-bounded computation. To describe the guarantees of the generator, let us
first introduce a simple combinatorial model for space-bounded computation.

Definition 11. A read-once branching program (ROBP) is a directed acyclic graph where the vertices are
organized into a grid of n layers, with w vertices in each layer, plus a single start vertex in layer 0. Every
vertex in layers 0, . . . , n− 1 has exactly two outgoing edges to vertices in the next layer, labeled by 0 or 1.
Every vertex in layer n is additionally labeled with an outcome, either “accept” (1) or “reject” (0).

On input (x1, . . . , xn), the ROBP computes by successively taking each edge labeled xi from layer i−1
to layer i. It outputs the decision labeling the vertex it reaches in layer n.

The parameter w is called the width of the ROBP, and n is called the length.

You should think of “small space” as corresponding to w = poly(n), i.e., the number of bits logw
needed to describe the state of the branching program is only logarithmic in the length of the input.

Theorem 12 (Nisan). For all n,w, ε, there exists a log space computable PRG G : {0, 1}ℓ → {0, 1}n that
ε-fools every width-w, length-n ROBPs, using seed length ℓ = O(log n · log(nw/ε)).

Consequences for derandomizing space-bounded computation:

• Consider a probabilistic Turing machine M(y;x) (where y represents the “real” input and x represents
the random coin tosses) with read-only one-way access to its input and random tape, and working
space s. For every fixed input y, such a TM is a length-|x|, width-2s ROBP as a function of x. One
can derandomize M by enumerating over all 2ℓ seeds of Nisan’s PRG and taking the majority vote.

Formally, this shows that the complexity class BPL of languages decidable in logarithmic space and
polynomial time on a probabilistic TM is contained in SPACE(log2 n).

• Nisan’s generator is a powerful tool in the design of streaming algorithms. A streaming algorithm
gets one pass over a data stream of length n and aims to compute some property of the stream using
space poly(log n). Many low-space algorithms can be analyzed in the presence of a long string of
random bits, but this is too much for a streaming algorithm to store. So one can in stead store the seed
to Nisan’s PRG and generate pseudorandom bits on-the-fly.
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Here’s the idea behind Nisan’s PRG. Suppose we feed a length-n, width-w ROBP uniformly random
bits x1, . . . , xn/2 to get it from the start vertex v0 to a vertex vn/2 in the middle layer. Since the ROBP runs
in small space, it can only “remember” logw bits of information about the random string (x1, . . . , xn/2)
via the vertex vn/2. In other words, conditioned on vn/2, the prefix (x1, . . . , xn/2) still has min-entropy
n/2− logw. One can then apply a seeded extractor to the prefix, say with seed length O(logw), to extract
n/2 uniform bits for the rest of the computation. The total PRG seed length is now only n/2 + O(logw),
which is progress. To get down to polylogarithmic seed length, the idea is then to apply this recycling
procedure recursively.

Lemma 13 (Recycling lemma). Let f : {0, 1}n → [w] and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a
(k, ε)-seeded extractor for k = n− log(w/ε). Then for X ∼ Un and Z ∼ Ud,

TV (f(X) ◦ Um, f(X) ◦ Ext(X,Z)) ≤ 2ε.

Proof. For any vertex v ∈ [w], let Xv = (X | f(X) = v) be the uniform distribution on f−1(v). A short
calculation shows

TV (f(X) ◦ Um, f(X) ◦ Ext(X,Z)) =
∑
v∈[w]

TV (Um,Ext(Xv, Z)) · Pr[f(X) = v].

Define a “good” set G values v by G = {v | Pr[f(X) = v] ≥ ε/w}. By definition, if v ∈ G, then
H∞(Xv) ≥ n − log(w/ε). Meanwhile, most outcomes v are good in that Pr[f(X) /∈ G] ≤ w · ε

w ≤ ε.
Putting everything together,∑

v∈[w]

TV (Um,Ext(Xv, Z)) · Pr[f(X) = v] ≤
∑
v∈G

TV (Um,Ext(Xv, Z)) + Pr[f(X) /∈ G]

≤ 2ε.

We now construct Nisan’s PRG as follows. Let Ext : {0, 1}jd × {0, 1}d → {0, 1}jd be a family of
(jd − log(w/ε), ε)-seeded extractors, for j = 1, . . . , log n. Define a sequence of PRGs Gj : {0, 1}jd →
{0, 1}2j recursively by

G1(x, z) = z

Gj(x, z) = Gj−1(x) ◦Gj−1(Extj−1(x, z)) for j > 1.

We will show by induction on j that Gj εj-fools every length-2j , width-w ROBP B for εj ≤ 4j · ε. We
do this by a hybrid argument. Consider the following distributions:

D0 = X ◦X ′ for X,X ′ ∼ U2j−1

D1 = X ◦Gj−1(X
′) for X ∼ U2j−1 , X ′ ∼ U(j−1)d

D2 = Gj−1(X) ◦Gj−1(X
′) for X,X ′ ∼ U(j−1)d

D3 = Gj−1(X) ◦Gj−1(Ext(X,Z)) for X ∼ U(j−1)d, Z ∼ Ud

Hybrids D0 and D1 are 4j−1ε-indistinguishable by the inductive hypothesis, as are hybrids D1 and D2.
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