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Intro to spectral graph theory, Laplacian and its eigenvalues

Reading.
* Trevisan Chapter 3
* Spielman Chapters 2 and 3

Spectral graph theory relates the combinatorial properties of graphs (e.g., connectivity, colorability,
mixing of random walks) to the linear algebraic properties of associated matrices. It’s a central tool in both
algorithm design and complexity, with applications to:

* Markov chains. In a (large) graph where random walks mix quickly, one can sample efficiently sample
from the stationary distribution by simulating a random walk.

* Expanders, and thereby to derandomization.
 Spectral sparsification for the design of fast graph algorithms.
* Solving systems of linear equations.

* Finding electrical flows.

1 Combinatorial Laplacian

Let G = (V, E) be an undirected graph with n = |V|. Let f : V — R be a function on the vertices of G.
An important quantity in spectral graph theory is the “Laplacian quadratic form”:

QU= Y (flu)— fv)*

(u,v)EE

How should we think about this quantity? Suppose f is the 0-1 indicator for a subset .S of vertices. Recalling
our notation 95 = {(u,v) € E | u € s,v ¢ S}, we have that Q[15] = |0S|.

The name for this quantity comes from the fact that it’s the quadratic form associated to the “Laplacian”
linear operator. This is the operator L : R™ — R" defined by

Lf(u) = deg(u)f(u) = > f(v).

Claim 1.
QU = (f,Lf) =Y f(u)- Lf(u).
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Proof. We can rewrite the LHS as

> ) = 2f(u)f(v) =) fw)Pdeg(u) = > > f(u)

(u,v)€E uevV u€eV v~u
which is equal to the RHS. O

The Laplacian operator has a nice matrix representation. Let D be the degree operator D f(u) :=
deg(u) f(u), which is specified by the matrix

deg(uy) 0 0
0 deg(ug) ... 0
b_ . g(uz)
0 0 ... deg(up)

Let A be the adjacency matrix of the graph G, specified by Au,v] = 1 if (u,v) € E and Alu,v] = 0
otherwise. Then L = D — A.

2 Eigenvalues of the Laplacian

Spectral graph theory is all about understanding how the algebraic properties of matrices like L and A tell
us combinatorial information about GG. So let’s start investigating some properties of the eigenvalues of L.

Definition 2. Let M : R™ — R” be a linear operator (matrix). A function (vector) f : V — R is an
eigenvector of M with eigenvalue A\ if M f = A\f.

Fact 3. The constant function 1 is an eigenvector of L with eigenvalue 0.
Fact 4. The eigenvalues of L are all nonnegative, i.e., L is positive semidefinite.

Proof. The lazy way to see this is to note that the Laplacian quadratic form Q|[f] is always nonnegative,
so L is PSD. For a slightly more hands-on explanation, suppose Lf = Af. Then by Claim 1, Q[f] =
> wey AMf(w)? > 0 which implies A > 0. O

Theorem 5. Sort the eigenvalues of a Laplacian L in nondecreasing order: 0 = A1 < o < --- < Ay
Then Ao = 0 iff G is disconnected.

More generally, A\, = 0 iff G has at least k£ connected components.

Proof. First suppose G is disconnected. Let S and 7" be two disjoint connected components. Then L1g = 0
and L1 = 0, so L as two linearly independent eigenvectors of eigenvalue 0. Hence Ao = 0.

For the other direction, we prove the contrapositive. Suppose G is connected and f is an eigenvector of
L with eigenvalue 0. We claim that f must be a scalar multiple of 1. To see this, observe that

(u,w)EE

This implies that f(u) = f(v) for all neighboring wu, v. Since G is connected, we must have f(u) = f(v)
for all vertices u, v, which means f is in the subspaced spanned by 1. O



Example 6. Let K, be the complete graph with self-loops. It has adjacency matrix

11 1
11 1
A=J, =
11 1
Its Laplacian is
n—1 -1 -1
-1 n-1 -1
L=nl,—J,=
-1 -1 n—1
As with any Laplacian matrix, this has A\; = 0. We claim that Ay = --- = A\, = n. This will follow from

the fact that for any function f that is orthogonal to 1, we have L f = nf. To see this, we compute for any
ueV:

Lf(u)=nf(u)— > fl)=nflu)= f)=nf(u),

(u,v)EE veV

where the last equality holds because f 11 means ) .y f(v) = 0.

3 Rayleigh Quotient

The smallest “interesting” eigenvalue of a Laplacian is the second one. Theorem 5 tells us that it charac-
terizes when G is connected. It turns out that when Ay > 0, its magnitude quantifies how connected G
is.

Here’s some intuition. Suppose again that f = 1 is the 0-1 indicator for a set .S of vertices, and suppose
G is d-regular. That is, every vertex in G has exactly d neighbors. (This assumption can be lifted using a
more complicated definition of L.) Recall our interpretation that Q[f] = |0.S| measures the boundary size
of S. We can interpret the ratio

0S|
—— = Pr [véSlueld].
|S‘ (u,U)EE[ ¢ | ]
Now consider that
1S =" Fw)?.
ueV
So the ratio
105 _ (/L)
S| (f, f)

tells us something about how likely a random point in .S is to have a neighbor outside of S.

Definition 7. Given an operator M and a function f, define the Rayleigh quotient

_ (M)



To complement the combinatorial interpretation above, we describe a close relationship between the
Rayleigh quotient and the eigenvalues of M. First observe that if f is an eigenvalue of M with eigenvalue
A, then Rys[f] = A. This suggests a way to compute the eigenvalues of M by peeling them off one-by-one
in the following sense.

Theorem 8. If M is a symmetric matrix with eigenvalues A1 < - -- < X\, and corresponding eigenvectorsfi, . . .

Then

A1 =min R ,
1 =min Mmlf]

A= min R Yo
2= i Ralf]

A= min  Rylf]
FA0FESE

where S_1 = span{ fi,..., fk—1}

Proof sketch. By the spectral theorem for real symmetric matrices, we know that we can take the eigenvec-
tors fi,..., fn to be orthogonal. Thus, the condition f € Sk{1 implies f 1 f; foralli =1,...,k— 1. So
for f € Sj- |, we have

n n n n

O i, MY cifi) = O cifi Y Ncifi) =D Nk > MY el

i=k i=k i=k =k i=k i=k

The denominator of Ry [f], on the other hand, is >, c?. So the Rayleigh quotient itself is always at least
k- Meanwhile, plugging in f = fj, itself yields Rys[fi] = k. O



