
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 13:

Intro to spectral graph theory, Laplacian and its eigenvalues

Reading.

• Trevisan Chapter 3

• Spielman Chapters 2 and 3

Spectral graph theory relates the combinatorial properties of graphs (e.g., connectivity, colorability,
mixing of random walks) to the linear algebraic properties of associated matrices. It’s a central tool in both
algorithm design and complexity, with applications to:

• Markov chains. In a (large) graph where random walks mix quickly, one can sample efficiently sample
from the stationary distribution by simulating a random walk.

• Expanders, and thereby to derandomization.

• Spectral sparsification for the design of fast graph algorithms.

• Solving systems of linear equations.

• Finding electrical flows.

1 Combinatorial Laplacian

Let G = (V,E) be an undirected graph with n = |V |. Let f : V → R be a function on the vertices of G.
An important quantity in spectral graph theory is the “Laplacian quadratic form”:

Q[f ] :=
∑

(u,v)∈E

(f(u)− f(v))2.

How should we think about this quantity? Suppose f is the 0-1 indicator for a subset S of vertices. Recalling
our notation ∂S = {(u, v) ∈ E | u ∈ s, v /∈ S}, we have that Q[1S ] = |∂S|.

The name for this quantity comes from the fact that it’s the quadratic form associated to the “Laplacian”
linear operator. This is the operator L : Rn → Rn defined by

Lf(u) = deg(u)f(u)−
∑
v∼u

f(v).

Claim 1.
Q[f ] = ⟨f, Lf⟩ =

∑
u∈V

f(u) · Lf(u).

1



Proof. We can rewrite the LHS as∑
(u,v)∈E

f(u)2 − 2f(u)f(v) + f(v)2 =
∑
u∈V

f(u)2 deg(u)−
∑
u∈V

∑
v∼u

f(u)f(v),

which is equal to the RHS.

The Laplacian operator has a nice matrix representation. Let D be the degree operator Df(u) :=
deg(u)f(u), which is specified by the matrix

D =


deg(u1) 0 . . . 0

0 deg(u2) . . . 0
...
0 0 . . . deg(un)

 .

Let A be the adjacency matrix of the graph G, specified by A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0
otherwise. Then L = D −A.

2 Eigenvalues of the Laplacian

Spectral graph theory is all about understanding how the algebraic properties of matrices like L and A tell
us combinatorial information about G. So let’s start investigating some properties of the eigenvalues of L.

Definition 2. Let M : Rn → Rn be a linear operator (matrix). A function (vector) f : V → R is an
eigenvector of M with eigenvalue λ if Mf = λf .

Fact 3. The constant function 1 is an eigenvector of L with eigenvalue 0.

Fact 4. The eigenvalues of L are all nonnegative, i.e., L is positive semidefinite.

Proof. The lazy way to see this is to note that the Laplacian quadratic form Q[f ] is always nonnegative,
so L is PSD. For a slightly more hands-on explanation, suppose Lf = λf . Then by Claim 1, Q[f ] =∑

u∈V λf(u)2 ≥ 0 which implies λ ≥ 0.

Theorem 5. Sort the eigenvalues of a Laplacian L in nondecreasing order: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Then λ2 = 0 iff G is disconnected.

More generally, λk = 0 iff G has at least k connected components.

Proof. First suppose G is disconnected. Let S and T be two disjoint connected components. Then L1S = 0
and L1T = 0, so L as two linearly independent eigenvectors of eigenvalue 0. Hence λ2 = 0.

For the other direction, we prove the contrapositive. Suppose G is connected and f is an eigenvector of
L with eigenvalue 0. We claim that f must be a scalar multiple of 1. To see this, observe that

0 = Q[f ] =
∑

(u,v)∈E

(f(u)− f(v))2.

This implies that f(u) = f(v) for all neighboring u, v. Since G is connected, we must have f(u) = f(v)
for all vertices u, v, which means f is in the subspaced spanned by 1.
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Example 6. Let Kn be the complete graph with self-loops. It has adjacency matrix

A = Jn =


1 1 . . . 1
1 1 . . . 1
...
1 1 . . . 1

 .

Its Laplacian is

L = nIn − Jn =


n− 1 −1 . . . −1
−1 n− 1 . . . −1

...
−1 −1 . . . n− 1

 .

As with any Laplacian matrix, this has λ1 = 0. We claim that λ2 = · · · = λn = n. This will follow from
the fact that for any function f that is orthogonal to 1, we have Lf = nf . To see this, we compute for any
u ∈ V :

Lf(u) = nf(u)−
∑

(u,v)∈E

f(v) = nf(u)−
∑
v∈V

f(v) = nf(u),

where the last equality holds because f⊥1 means
∑

v∈V f(v) = 0.

3 Rayleigh Quotient

The smallest “interesting” eigenvalue of a Laplacian is the second one. Theorem 5 tells us that it charac-
terizes when G is connected. It turns out that when λ2 > 0, its magnitude quantifies how connected G
is.

Here’s some intuition. Suppose again that f = 1S is the 0-1 indicator for a set S of vertices, and suppose
G is d-regular. That is, every vertex in G has exactly d neighbors. (This assumption can be lifted using a
more complicated definition of L.) Recall our interpretation that Q[f ] = |∂S| measures the boundary size
of S. We can interpret the ratio

|∂S|
|S|

= Pr
(u,v)∈E

[v /∈ S|u ∈ S].

Now consider that
|S| =

∑
u∈V

f(u)2.

So the ratio
|∂S|
|S|

=
⟨f, Lf⟩
⟨f, f⟩

tells us something about how likely a random point in S is to have a neighbor outside of S.

Definition 7. Given an operator M and a function f , define the Rayleigh quotient

RM [f ] :=
⟨f,Mf⟩
⟨f, f⟩

.
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To complement the combinatorial interpretation above, we describe a close relationship between the
Rayleigh quotient and the eigenvalues of M . First observe that if f is an eigenvalue of M with eigenvalue
λ, then RM [f ] = λ. This suggests a way to compute the eigenvalues of M by peeling them off one-by-one
in the following sense.

Theorem 8. If M is a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding eigenvectorsf1, . . . , fn.
Then

λ1 = min
f ̸=0

RM [f ],

λ2 = min
f ̸=0,f⊥f1

RM [f ], . . .

λk = min
f ̸=0,f∈S⊥

k−1

RM [f ]

where Sk−1 = span{f1, . . . , fk−1}

Proof sketch. By the spectral theorem for real symmetric matrices, we know that we can take the eigenvec-
tors f1, . . . , fn to be orthogonal. Thus, the condition f ∈ S⊥

k−1 implies f⊥fi for all i = 1, . . . , k − 1. So
for f ∈ S⊥

k−1, we have

⟨
n∑

i=k

cifi,M
n∑

i=k

cifi⟩ = ⟨
n∑

i=k

cifi,
n∑

i=k

λicifi⟩ =
n∑

i=k

λic
2
i ≥ λk

n∑
i=k

c2i .

The denominator of RM [f ], on the other hand, is
∑n

i=k c
2
i . So the Rayleigh quotient itself is always at least

λk. Meanwhile, plugging in f = fk itself yields RM [fk] = λk.
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