
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 14:

Conductance, Cheeger’s inequality

Reading.

• Trevisan Chapter 4

• Spielman Chapters 20 and 21

Let’s recap a few definitions. For an undirected graph G = (V,E), the Laplacian quadratic form is

Q[f ] =
∑

(u,v)∈E

(f(u)− f(v))2.

It’s so named because it is the quadratic form associated to the Laplacian operator L, which you can either
define to be the operator for which ⟨f, Lf⟩ = Q[f ] or L = D−A where D is the diagonal matrix of degrees
of G and A is the adjacency matrix.

Last time we started studying the eigenvalues of L and began associating them to combinatorial proper-
ties of G. In particular, we showed that all the eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn and that λ2 = 0 iff G is
disconnected.

1 Courant-Fischer Theorem

Theorem 1 (Spectral Theorem). Let M be a real symmetric matrix. Then there exists a diagonal matrix Λ
and an orthogonal matrix V such that M = V ΛV T =

∑n
i=1 λiviv

T
i . The eigenvalues of M are the entries

λi of Λ and the columns vi of V are the eigenvectors.

Definition 2. Given an operator M and a function f , define the Rayleigh quotient

RM [f ] :=
⟨f,Mf⟩
⟨f, f⟩

.

Theorem 3. If M is a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding eigenvectorsf1, . . . , fn.
Then

λ1 = min
f ̸=0

RM [f ],

λ2 = min
f ̸=0,f⊥f1

RM [f ], . . .

λk = min
f ̸=0,f∈S⊥

k−1

RM [f ]

where Sk−1 = span{f1, . . . , fk−1}
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Proof sketch. By the spectral theorem for real symmetric matrices, we know that we can take the eigenvec-
tors f1, . . . , fn to be orthogonal. Thus, the condition f ∈ S⊥

k−1 implies f⊥fi for all i = 1, . . . , k − 1. So
for f ∈ S⊥

k−1, we have

⟨
n∑

i=k

cifi,M
n∑

i=k

cifi⟩ = ⟨
n∑

i=k

cifi,
n∑

i=k

λicifi⟩ =
n∑

i=k

λic
2
i ≥ λk

n∑
i=k

c2i .

The denominator of RM [f ], on the other hand, is
∑n

i=k c
2
i . So the Rayleigh quotient itself is always at least

λk. Meanwhile, plugging in f = fk itself yields RM [fk] = λk.

Recall that one motivation for studying this “variational” characterization of eigenvalues of the Laplacian
was from graph cuts. For a set of vertices S, we introduced a quantity called the “isoperimetric ratio”:

θ(S) :=
|∂S|
|S|

.

This quantity doesn’t treat S and V \S symmetrically, so we’ll consider it only when |S| ≤ n/2. Sometimes
you’ll see this asymmetry dealt with by normalizing by min{|S|, |V \ S|}.

Claim 4. If S ⊆ V with |S| ≤ n/2, then
|∂S|
|S|

≥ λ2/2.

Proof. We want to use the variational characterization of λ2 of the Laplacian

λ2 = min
f ̸=0,f⊥1

⟨f, Lf⟩
⟨f, f⟩

.

To do this, we need to associate to every cut S a “test function” f that makes the Rayleigh quotient small.
Based on our previous discussion, your first instinct might be to set f = 1S , but this is not orthogonal

to 1. So we’ll fix this by instead taking
f = 1S − σ1

where σ = |S|/n.
Now we can check:

⟨f, Lf⟩ =
∑

(u,v)∈E

(f(u)− f(v))2 =
∑

(u,v)∈E

(1S(u)− 1(v))2 = |∂S|,

and
⟨f, f⟩ =

∑
v∈S

(1− σ)2 +
∑
v/∈S

σ2 = |S|(1− σ).

Thus we get
|∂S|

|S|(1− σ)
≥ min

f ̸=0,f⊥1

⟨f, Lf⟩
⟨f, f⟩

= λ2

and rearranging,

θ(S) ≥ λ2(1− s) ≥ λ2

2
.
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If you don’t like the inductive statement of Theorem 3, you may find comfort in the following closely
related statement called the Courant-Fischer Theorem:

Theorem 5 (Courant-Fischer). If M is a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn,

λk = max
dim(S)=n−k+1

min
f ̸=0,f∈S

RM [f ] = min
dim(T )=k

max
f ̸=0,f∈T

RM [f ].

2 Cheeger’s Inequality

Claim 4 gave a lower bound on the isoperimetric ratio of a graph in terms of λ2. It turns out that λ2 actually
characterizes this quantity. The result is actually cleaner and tighter to state if we instead study a related
quantity called the graph conductance, and relate it to a normalized version of the Laplacian.

Definition 6. Let G be an undirected graph and let S ⊆ V be a set of vertices. The conductance of S is
defined to be

ϕ(S) =
|∂S|∑

v∈S deg(v)
.

The conductance of G itself is defined as

ϕ(G) = min
1≤|S|≤|V |/2

ϕ(S).

The new normalization makes it natural to study the following generalized Rayleigh quotient

⟨f, Lf⟩
⟨f,Df⟩

where D is the diagonal degree matrix of G. It’ll be convenient to express this in terms of the ordinary
Rayleigh quotient, which we can do be performing the change of variables g = D1/2f . This turns the ratio
into

⟨D−1/2g, LD−1/2g⟩
⟨D−1/2g,D1/2g⟩

=
⟨g,D−1/2LD−1/2g⟩

⟨g, g⟩
,

which is the ordinary Rayleigh quotient for the operator N := D−1/2LD−1/2. This operator is called the
normalized Laplacian. Observe that:

• Since L = D −A, we have N = I −D−1/2AD−1/2.

• If G is d-regular, then D = dI and D−1/2 = − 1√
d
I , so N = 1

dL.

Theorem 7 (Cheeger’s Inequality). For every undirected graph G with normalized Laplacian N with eigen-
values 0 = ν1 ≤ ν2 ≤ · · · ≤ νn, we have

ν2
2

≤ ϕ(G) ≤ 2
√
ν2.
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3 Proof of Cheeger’s Inequality

Cheeger’s Inequality consists of an “easy” direction and a “hard” direction. We’ve already essentially seen
the easy direction in our proof of Claim 4, so I won’t repeat it. The idea is to show that a set with small
conductance can be used to construct a test function that makes that Rayleigh quotient of N small.

The “hard” direction is also constructive. The idea is to show that if f is an eigenvector of N for
eigenvalue λ2, then f can be used to construct a set with small conductance. We will follow a proof due to
Trevisan, specialized to the case where G is d-regular.

Proposition 8. Let G be a d-regular graph, and let f⊥1. Then there exists a number t such that St = {u :
f(u) ≥ t} satisfies

ϕ(St) ≤
√
2RN [f ]

Note for d-regular graphs,

ϕ(St) =
|∂St|
d|St|

while

RN [f ] =
⟨f,Nf⟩
⟨f, f⟩

=
Q[f ]

d⟨f, f⟩
.

Proof. We first do some preprocessing to f to make it into a nicer function g with a smaller Rayleigh
quotient. First, assume V = [n] and that the vertices are sorted so that

f(1) ≤ f(2) ≤ · · · ≤ f(n).

Second, by setting g = f − f(1)1, we can get a function for which g(1) = 0 and hence g(u) ≥ 0 for
all u. Note that this doesn’t increase the Rayleigh quotient: Q[g] = Q[f ], while since f⊥1, we have
⟨g, g⟩ = ⟨f, f⟩+ f(1)2⟨1,1⟩ ≥ ⟨f, f⟩. Hence RN [g] ≤ RN [f ].

Finally, by multiplying by a scalar, we can assume that g(n)2 = 1 without changing its Rayleigh quo-
tient.

Our goal is to define a distribution on t such that

Et[|∂(St)|] ≤ d · Et[|St|] ·
√
2RN [g],

(where now St = {u : g(u) ≥ t})) which will imply the existence of a t satisfying the claim.
A distribution that works is the following: Sample t ∈ [0, 1] such that t2 is uniformly distributed in

[0, 1].
We now compute an upper bound on Et[|∂St|]. First, we write this expectation as∑

(u,v)∈E

Pr
t
[(u, v) ∈ ∂St].

Now an edge (u, v) where g(u) ≤ g(v) is in ∂St iff g(u)2 ≤ t2 < g(v)2. The probability that this happens

4



is |g(u)2 − g(v)2| = |g(u)− g(v)| · (g(u) + g(v)). Applying Cauchy-Schwarz twice:

Et[|∂St|] =
∑

(u,v)∈E

|g(u)− g(v)| · (g(u) + g(v))

≤
√ ∑

(u,v)∈E

(g(u)− g(v))2 ·
√ ∑

(u,v)∈E

(g(u) + g(v))2

≤
√

Q[g] ·
√ ∑

(u,v)∈E

2g(u)2 + 2g(v)2

≤
√
Q[g] ·

√
2d

∑
u∈V

g(u)2

=
√
2RN [g] · d ·

∑
u∈V

g(u)2

Now we observe that Et[|St|] =
∑

u Prt[g(u) ≥ t] =
∑

u Prt[g(u)
2 ≥ t2] =

∑
u g(u)

2. Putting
everything together gives us

Et[|∂(St)|] ≤ d · Et[|St|] ·
√
2RN [g]

as we wanted.
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