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Lecture Notes 14:

Conductance, Cheeger’s inequality

Reading.
* Trevisan Chapter 4
* Spielman Chapters 20 and 21

Let’s recap a few definitions. For an undirected graph G = (V, E), the Laplacian quadratic form is

(u,v)EE

It’s so named because it is the quadratic form associated to the Laplacian operator L, which you can either
define to be the operator for which (f, Lf) = Q[f] or L = D — A where D is the diagonal matrix of degrees
of G and A is the adjacency matrix.

Last time we started studying the eigenvalues of L and began associating them to combinatorial proper-
ties of G. In particular, we showed that all the eigenvalues 0 = A\; < Ay < ...\, and that Ay = 0 iff G is
disconnected.

1 Courant-Fischer Theorem

Theorem 1 (Spectral Theorem). Let M be a real symmetric matrix. Then there exists a diagonal matrix A
and an orthogonal matrix V such that M = VAVT = Yo )\ivivl-T . The eigenvalues of M are the entries
i of A and the columns v; of V' are the eigenvectors.

Definition 2. Given an operator M and a function f, define the Rayleigh quotient
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Theorem 3. If M is a symmetric matrix with eigenvalues A1 < --- < \,, and corresponding eigenvectorsfy, ..., fn.

Then
A1 =min R ,
1= 1min Mmlf]
A= min R yee
2= in  Bulf]

A= min  Rylf]
FA0.FESE

where Si,_1 = span{f1,..., fk—1}



Proof sketch. By the spectral theorem for real symmetric matrices, we know that we can take the eigenvec-
tors fi,..., fn to be orthogonal. Thus, the condition f € Sk{1 implies f 1 f; foralli =1,...,k— 1. So
for f € Sj- |, we have
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The denominator of Ry/[f], on the other hand, is Y[, 7. So the Rayleigh quotient itself is always at least
k- Meanwhile, plugging in f = f, itself yields Rys[fx] = k. O

Recall that one motivation for studying this “variational” characterization of eigenvalues of the Laplacian
was from graph cuts. For a set of vertices .S, we introduced a quantity called the “isoperimetric ratio”:

6(S) := ’ﬁ;‘

This quantity doesn’t treat S and V' \ S symmetrically, so we’ll consider it only when |.S| < n/2. Sometimes
you’ll see this asymmetry dealt with by normalizing by min{|S|, |V \ S|}.

Claim 4. [f S C V with |S| < n/2, then
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Proof. We want to use the variational characterization of Ay of the Laplacian
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To do this, we need to associate to every cut S a “test function” f that makes the Rayleigh quotient small.
Based on our previous discussion, your first instinct might be to set f = 1g, but this is not orthogonal
to 1. So we’ll fix this by instead taking
f=1lg—0o1

where o = |S|/n.
Now we can check:

(LLfy= Y (flw) = f@)= Y (s(u) = 1(v)*=05],

(u,v)EE (u,v)EE
and
(fify=> (1=0)+) o =1S|(1-0).
veS v¢S
Thus we get
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and rearranging,

8(S) > (1 — 5) >
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If you don’t like the inductive statement of Theorem 3, you may find comfort in the following closely
related statement called the Courant-Fischer Theorem:

Theorem 5 (Courant-Fischer). If M is a symmetric matrix with eigenvalues A1 < --- < Ay,

AL = i R = i R .
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2  Cheeger’s Inequality

Claim 4 gave a lower bound on the isoperimetric ratio of a graph in terms of \s. It turns out that Ay actually
characterizes this quantity. The result is actually cleaner and tighter to state if we instead study a related
quantity called the graph conductance, and relate it to a normalized version of the Laplacian.

Definition 6. Let G be an undirected graph and let S C V be a set of vertices. The conductance of S is

defined to be 95
P(S) = =————.
)= 5 s dea(®)

The conductance of G itself is defined as

¢(G) = _min = (S).
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The new normalization makes it natural to study the following generalized Rayleigh quotient

(f,Lf)

where D is the diagonal degree matrix of GG. It’ll be convenient to express this in terms of the ordinary
Rayleigh quotient, which we can do be performing the change of variables g = D2 f This turns the ratio
into

(D~'%g,LD"'g) {9, D"'2LD"/%g)
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which is the ordinary Rayleigh quotient for the operator N := D~'/2L.D~1/2_ This operator is called the
normalized Laplacian. Observe that:

e Since L=D — A, wehave N = [ — D~Y/24AD~1/2,

» If G is d-regular, then D = dI and D12 = — LI soN=1L.

1
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Theorem 7 (Cheeger’s Inequality). For every undirected graph G with normalized Laplacian N with eigen-
values 0 = 11 < vy < --- < y,, we have
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3 Proof of Cheeger’s Inequality

Cheeger’s Inequality consists of an “easy” direction and a “hard” direction. We’ve already essentially seen
the easy direction in our proof of Claim 4, so I won’t repeat it. The idea is to show that a set with small
conductance can be used to construct a test function that makes that Rayleigh quotient of N small.

The “hard” direction is also constructive. The idea is to show that if f is an eigenvector of N for
eigenvalue )y, then f can be used to construct a set with small conductance. We will follow a proof due to
Trevisan, specialized to the case where G is d-regular.

Proposition 8. Ler G be a d-regular graph, and let f 1 1. Then there exists a number t such that S; = {u :
f(u) > t} satisfies
¢(St) < V2RN|f]

Note for d-regular graphs,
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Proof. We first do some preprocessing to f to make it into a nicer function g with a smaller Rayleigh
quotient. First, assume V' = [n] and that the vertices are sorted so that

fA)<f2)<--- < fn).

Second, by setting ¢ = f — f(1)1, we can get a function for which g(1) = 0 and hence g(u) > 0 for
all u. Note that this doesn’t increase the Rayleigh quotient: Q[g] = Q[f], while since f11, we have
(9.9) = (f. f) + F(L2(L.1) > (/. /). Hence Rylg] < Rx[f].

Finally, by multiplying by a scalar, we can assume that g(n)? = 1 without changing its Rayleigh quo-
tient.

Our goal is to define a distribution on ¢ such that

E[|0(S)[] < d - Ee[[Se] - V2Rn]g],

(where now Sy = {u : g(u) > t})) which will imply the existence of a ¢ satisfying the claim.

A distribution that works is the following: Sample ¢ € [0,1] such that 2 is uniformly distributed in
[0,1].

We now compute an upper bound on E.[|0S;|]. First, we write this expectation as

> Pr((u,v) € 05y].

(u,v)EE

Now an edge (u,v) where g(u) < g(v) is in 3y iff g(u)? < t? < g(v)?. The probability that this happens



is [g(u)? — g(v)?| = |g(u) — g(v)| - (9(u) + g(v)). Applying Cauchy-Schwarz twice:
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Now we observe that E¢[|S;]] = >, Pre[g(u) > t] = >, Prefg(u)? > 7]
everything together gives us
EflO(SH)[] < d-Ee[[ S]] - V2RN[9]

as we wanted.

= >, 9(u)?. Putting



