
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 15:

Random Walks

Reading.

• Spielman Chapter 10

A random walk is a process that begins at a vertex in a graph, and in each time step, moves to an adjacent
vertex. Last time, we saw that the second eigenvalue of the normalized Laplacian governs the behavior of
one step of a random walk. Today we will see how it governs a random walk’s convergence rate, or “mixing
time.”

1 Random Walks

Let G = (V,E) be an undirected graph. We will primarily be interested in the expected behavior of a
random walk, i.e., the distribution of a walk after a certain number of time steps.

Denote a probability distribution on V by its probability mass function p : V → [0, 1]. Let pt denote
the distribution of a random walk at time step t. We will usually think of starting the walk deterministically
from a fixed vertex, so pi = 1{v0} for some v0 ∈ V . To sample from the distribution of random walk at time
step t+ 1:

1. Sample a vertex u ∼ pt

2. Sample a random vertex v ∼ u.

Algebraically, this update rule is given by:

pt+1(v) =
∑

(u,v)∈E

1

deg(u)
· pt(u).

It’s a useful exercise to check that
pt+1 = Wpt = W tp0

where W = AD−1 is the walk matrix of the graph G.
The walk matrix has a special (right) eigenvector with positive entries,

π(u) =
deg(u)∑
v∈V deg(v)

=
deg(u)

∥d1/2∥

with eigenvalue 1:

Wπ(v) =
∑

(u,v)∈E

1

deg(u)
· deg(u)
∥d1/2∥

=
deg(v)

∥d1/2∥
.
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This is the stationary or stable distribution, as it is the distribution on vertices that remains fixed after taking
one step of the random walk.

We’d like to establish conditions under which a random walk converges to its stationary distribution, i.e.,
pt → π as t → ∞. For intuition, suppose ϕ1, . . . , ϕn is a (not necessarily orthonormal) basis of eigenvectors
for W with corresponding eigenvalues 1 = w1 ≥ w2 ≥ · · · ≥ wn ≥ −1. Then if p0 = α1ϕ1 + · · ·+ αnϕn,
we have

W tp0 = α1w
t
1ϕ1 + · · ·+ αnw

t
nϕn.

As long as w1 > w2 and wn > −1, this sum will be dominated by the first term α1ϕ1, with all other terms
vanishing exponentially fast in t.

However, things can go (seriously) wrong when either of these eigenvalue conditions fail. Fortunately,
these eigenvalue conditions exactly correspond to conditions under which we expect convergence to fail.

Theorem 1 (Consequence of Perron-Frobenius). Let W be the walk matrix of a graph G with eigenvalues
1 = w1 ≥ w2 ≥ · · · ≥ wn ≥ −1. Then

• w2 = 1 iff G is disconnected.

• If G is connected, then wn = −1 iff G is bipartite.

I won’t prove this, but to understand why it’s true, you can read Chapter 4.5 in Spielman. Note that
the Perron-Frobenius theorem doesn’t directly apply to W since it’s not symmetric, so one instead uses
the fact that W = D1/2(D−1/2AD−1/2)D−1/2 is similar to the symmetric normalized adjacency matrix
D−1/2AD−1/2.

If G is disconnected, then a random walk starting in one component can never reach a different com-
ponent. If G is bipartite, then a walk will always oscillate between the two halves of the bipartition, so the
distribution at time t will depend on the parity of t. Perhaps miraculously, the Perron-Frobenius theorem
tells us that these are the only two possible failure modes.

2 Lazy Random Walks

Having to treat bipartite graphs differently is rather annoying, so instead of studying simple random walks,
one often studies lazy random walks, where the transition operator is given by

W̃ =
1

2
I +

1

2
W =

1

2
I +

1

2
AD−1.

That is, one step of a lazy random walk stays at the same vertex with probability 1/2 and transitions to a
random neighbor with probability 1/2.

Claim 2. The eigenvalues of W̃ are 1 = ω1 ≥ ω2 ≥ · · · ≥ ωn ≥ 0 where ωi = 1− νi/2.

Here, we recall that 0 = ν1 ≤ ν2 ≤ · · · ≤ νn ≤ 2 are the eigenvalues of the normalized Laplacian
N = I −D−1/2AD−1/2.
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Proof. Let f be an eigenvector of N with eigenvalue ν. We will show that D1/2f is an eigenvector of W̃
with eigenvector 1− ν/2. To see this, we calculate:

W̃D1/2f =
1

2
D1/2f +

1

2
AD−1/2f

=
1

2
D1/2f +

1

2
D1/2(I −N)f

= D1/2f − 1

2
νD1/2f.

Now the heuristic calculation from before goes through, using the ω’s in place of the w’s, as long as
ω2 < 1 ⇐⇒ ν2 > 0 ⇐⇒ G is connected.

3 Convergence Rate

Theorem 3. For any start vertex s, letting p0 = 1{s}, and any vertex v and t ≥ 1, we have

|pt(v)− π(v)| ≤

√
deg(v)

deg(s)
· ωt

2.

Proof. Let p0 = α1D
1/2f1 + · · · + αnD

1/2fn, where D1/2f1, . . . , D
1/2fn are the eigenvectors for W̃

corresponding to eigenvalues 1 = ω1 ≥ ω2 ≥ · · · ≥ ωn ≥ 0. Then

pt = α1D
1/2f1 +

n∑
i=2

ωtαiD
1/2fi = π +

n∑
i=2

ωtαiD
1/2fi.

Write

pt(v) = ⟨1{v}, pt⟩

= ⟨1{v}, π +
n∑

i=2

ωt
iαiD

1/2fi⟩

= π(v) +
√

deg(v)

n∑
i=2

ωt
iαifi(v),

so our goal is to bound the magnitude of the term on the right.
To do this, we observe that the coefficients in our basis decomposition of p0 satisfy

αi = ⟨fi, D−1/21{s}⟩ = (deg(s))−1/2fi(s)

since the fi’s are orthonormal. Plugging this in gives

√
deg(v)

n∑
i=2

ωt
iαifi(v) =

√
deg(v)

deg(s)

n∑
i=2

ωt
ifi(s)fi(v).
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The sum on the right is bounded from above by

ωt
2

n∑
i=2

|fi(s)| · |fi(v)|.

By Cauchy-Schwarz, this is at most

ωt
2

√√√√ n∑
i=1

fi(s)2

√√√√ n∑
i=1

fi(v)2 ≤ ωt
2

since the orthogonal matrix with columns f1, . . . , fn also has orthonormal rows.
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