
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 17:

More on Expanders, Resistor Networks

Reading.

• Vadhan Section 4.3, Spielman 11.7-11.9, 12.1-12.4

Recall the definition of a spectral expander:

Definition 1 (Spectral Expansion). A graph G is a γ-spectral expander if ν2 ≥ γ and (2− νn) ≥ γ, where
0 = ν1 ≤ ν2 ≤ · · · ≤ νn ≤ 2 are the eigenvalues of the normalized Laplacian N = 1

dL = I − 1
dA.

1 Extractors from Expanders

Random walks on expanders also provide a useful method for constructing an extractor. Intuitively, if one
starts a random walk from a vertex chosen from a weak random source, and then takes a short random walk,
then one ends up at a nearly uniform vertex. We will now make this precise. Recall:

Definition 2. A (k, ε)-seeded extractor is a function Ext : {0, 1}n × {0, 1}s → {0, 1}m such that
TV (Ext(X,Us),Um) ≤ ε for every distribution X over {−1, 1}n with min-entropy ≥ k.

Suppose we have a strongly explicit family of d-regular γ-spectral expanders, with γ ≥ 1/2. Consider
the following algorithm Ext : {0, 1}n × {0, 1}t log d → {0, 1}n. On input x ∈ {0, 1}n and y ∈ {0, 1}t log d,
interpret y as a sequence y1, . . . , yt ∈ [d] of directions to take. Starting at x in a graph G on vertex set
{0, 1}n, follow these directions and output the destination vertex.

Theorem 3. For t = (n− k)/2+ log(1/ε), the algorithm Ext described above is a (k, ε)-seeded extractor.

Proof. Let X be a k-source, let p0 be the start distribution of the random walk, and let pt be the distribution
of the destination vertex. Letting π denote the uniform distribution on V , we have

∥pt − π∥22 = ∥W t(p0 − π)∥22
≤ (1− γ)2t∥p0 − π∥22
≤ 2−2t · (C(p0)− 2−n)

≤ 2−2t · (2−k − 2−n)

≤ 2−2t−k.

Here, we recall that the collision probability C(p) is defined by
∑

v p(v)
2.

The first inequality is a consequence of spectral expansion that you proved as an exercise. The second
uses the fact that ∥p− π∥2 = C(p)− 2−n, which we proved as part of the proof of Lemma 9 in Lecture 12.
The third uses the fact that C(p) ≤ 2−k for any distribution p with min entropy at least k.
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Now using these facts in reverse, and setting t = (n− k)/2 + log(1/ε) we get

C(pt) = ∥pt − π∥22 + 2−n ≤ 1 + ε2

2n

Using Lemma 9 from Lecture 12, which says that TV (pt, π) ≤ 2n/2−1
√
C(pt)− 2−n, we get that TV (pt, π) ≤

ε.

2 Limits of Spectral Expansion

How good can the spectral expansion of a d-regular graph be? The following gives a lower bound:

Proposition 4. For every d-regular graph of diameter at least 4, we have ν2 ≤ 1− 1/
√
d.

Proof. Choose two vertices u and v whose neighborhoods have no edges between them, i.e., there are no
edges between N(u) and N(v) where N(u) = {s | s ∼ u}. Define the test function

g(x) =



1 if x = u

1/
√
d if x ∈ N(u)

−1 if x = v

−1/
√
d if x ∈ N(v)

0 otherwise.

Now we compute the Rayleigh quotient of L at f . We have

Q[g] = 2d(1− 1/
√
d)2 + 2d(d− 1)(1/

√
d)2

= 2(2d− 2
√
d).

Meanwhile,
⟨g, g⟩ = 2 + 2d · (1/

√
d)2 = 4.

Hence we have

ν2 = min
f ̸=0,f⊥1

⟨f,Nf⟩
⟨f, f⟩

≤ Q[g]

d⟨g, g⟩
= 1− 1√

d
.

Some additional work yields the Alon-Boppana bound:

Theorem 5. For every d and every infinite family {Gn} of d-regular graphs,

ν2 ≤ 1− 2
√
d− 1

d
+ ε(n)

where ε(n) → 0 as n→ ∞.

3 Constructions of Expanders

We’d like to construct infinite sequences of d-regular expander graphs which, for algorithmic applications,
should be strongly explicit. Unfortunately we won’t be able to do justice to any of the constructions, but
here is a rundown of the known techniques for constructing expanders and pointers you can look into.
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Probabilistic method. Theorem 4.4 in Vadhan illustrates how to show that random graphs are good
combinatorial expanders. A random d-regular graph matches the Alon-Boppana bound with high prob-
ability. This was conjectured by Noga Alon around 1986, and proved by Friedman in 2004: https:
//arxiv.org/abs/cs/0405020.

Algebraic constructions. In 1973, Margulis gave the first explicit construction of (a continuous) analog
of expanders; the discrete version was analyzed by Gabber and Gallai in 1981. Later, Lubotzky, Phillips,
and Sarnak and, independently, Margulis, gave explicit constructions of Ramanujan graphs when d = p+1
for a prime p that is congruent to 1 modulo 4. Ramanujan graphs are graphs which meet the Alon-Boppana
bound without the ε(n) term.

Combinatorial constructions. Reingold, Vadhan, and Wigderson introduced a natural framework for
constructing expanders by starting with a small expander on a constant number of vertices, and repeatedly
applying graph operations to obtain an expander on a larger number of vertices. Let an (n, d, γ)-graph have
n vertices, degree d, and spectral expansion γ. Consider interleaving the following operations:

Squaring An an edge between u and v in G′ iff they are connected by a path of length 2 in G. Then G′ is
an (n, d2, 2γ − γ2)-graph.

Tensoring On vertex set V × V , connect (u1, u2) to (v1, v2) iff (u1, v1) ∈ E and (u2, v2) ∈ E. Then G′ is
an (n2, d2, γ)-graph.

Zig-Zag This is a more complex operation that takes an (n, d, γ)-graph G and a small fixed (n′, d′, γ′)-
graph H and creates a (nn′, (d′)2, γ(γ′)2)-graph G′.

Note that each operation improves one parameter while making the other two worse. You can see
the details of these operations and how to piece them together in Chapter 4.3 of Vadhan. For a simpler
construction of constant-degree expander that illustrates a lot of the same ideas, see Chapter 30 of Spielman.

4 Resistor Networks

Let G be an undirected weighted graph. Think of G as a resistor network, where each edge e is a resistor
with resistance re. Given a voltage function v : V → R on the vertices, Ohm’s Law (V = IR) implies that
the current from a to b is

i(a, b) =
v(a)− v(b)

r(a,b)
= w(a,b) · (v(a)− v(b)).

Note that even though the graph is undirected, this is a directed quantity: i(a, b) = −i(b, a). The net current
from a to the rest of the network is

iext(a) =
∑
b∈V

w(a,b) · (v(a)− v(b)) = (Lv)(a)

where L is the usual Laplacian matrix, but taking into account edge weights.
The principle of conservation of flow implies the net current flowing in an out of a vertex must be 0.

So if iext(a) ̸= 0, that means some external current is being applied at a. One can think of the vertices for
which iext(a) ̸= 0 as “boundary vertices” through which current is entering or exiting the network, and the
other vertices as “internal vertices.”
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Let’s think about what it means for iext ≡ 0. This corresponds to a voltage function for which Lv = 0,
which for a connected graph G, occurs if and only if v is a constant function.

Now let’s consider a more general version of this problem. Given a vector of external currents iext, what
are the induced voltages on the vertices in the graph? Algebraically, this is a solution v to the linear system

Lv = iext.

This system has problems owing to the fact that L is singular. Nevertheless, we have:

1. Lv = iext has a solution iff iext ⊥ 1, i.e., the net current flowing into the network is zero.

2. Solutions to the system are unique up to constants. That is, v is a solution if and only if v + c1 is a
solution for every c ∈ R.

A canonical solution to this system is given by the Moore-Penrose pseudo-inverse of L. The general
definition is kind of complicated, but for symmetric matrices, it’s characterized as follows:

Definition 6. The pseudo-inverse of a symmetric matrix L, written L+, is the matrix such that

1. Im(L+) = Im(L), and

2. LL+ = Π where Π is the symmetric matrix that projects onto Im(L).

As usual, it’s easiest to think about L+ in terms of the eigendecomposition of L. Let 0 = λ1 ≤ λ2 ≤
. . . λn be the eigenvalues of L with corresponding orthonormal eigenvectors ψ1 = 1, ψ2, . . . , ψn. Then we
can write

L =
n∑

i=1

λiψiψ
T
i =

n∑
i=2

λiψiψ
T
i .

The pseudoinverse is given by

L+ =
n∑

i=2

1

λi
ψiψ

T
i .

So given a linear system Lv = iext where iext ⊥ 1, we can take the canonical solution v = L+iext.
This is the “balanced” solution, i.e., the one such that v ⊥ 1.

5 Effective Resistance

Fix two vertices a, b in a resistor network. We can think of the network as a one large resistor connecting a
and b. What is the resistance of this equivalent resistor?

Recalling Ohm’s Law, i(a, b) = (v(a)− v(b))/r(a,b), we can define the effective resistance Reff(a, b) =
v(a)− v(b) where v is the vector of induced potentials when one unit of current enters the network at a and
exits at b. That is, v is the solution to

Lv = 1a − 1b,

i.e., v = L+(1a − 1b) and we are interested in v(a)− v(b). Thus,

Reff(a, b) = ⟨1a − 1b, L
+(1a − 1b)⟩ = ∥L+/21a − L+/21b∥2

where L+/2 is the matrix square root of positive semidefinite L+, explicitly given by

L+/2 =

n∑
i=2

1√
λi
ψiψ

T
i

using the decomposition above.
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