
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 18:

Resistor Networks, Spectral Sparsification

Reading.

• Spielman 11.7-11.9, 12.1-12.4, 32

1 Resistor Networks

Let G be an undirected weighted graph. Think of G as a resistor network, where each edge e is a resistor
with resistance re. Given a voltage function v : V → R on the vertices, Ohm’s Law (V = IR) implies that
the current from a to b is

i(a, b) =
v(a)− v(b)

r(a,b)
= w(a,b) · (v(a)− v(b)).

Note that even though the graph is undirected, this is a directed quantity: i(a, b) = −i(b, a). The net current
from a to the rest of the network is

iext(a) =
∑
b∈V

w(a,b) · (v(a)− v(b)) = (Lv)(a)

where L is the usual Laplacian matrix, but taking into account edge weights. That is, L is the linear operator
such that

⟨v, Lv⟩ =
∑

(a,b)∈E

w(a,b)(f(a)− f(b))2.

The principle of conservation of flow implies the net current flowing in an out of a vertex must be 0.
So if iext(a) ̸= 0, that means some external current is being applied at a. One can think of the vertices for
which iext(a) ̸= 0 as “boundary vertices” through which current is entering or exiting the network, and the
other vertices as “internal vertices.”

Let’s think about what it means for iext ≡ 0. This corresponds to a voltage function for which Lv = 0,
which for a connected graph G, occurs if and only if v is a constant function.

Now let’s consider a more general version of this problem. Given a vector of external currents iext, what
are the induced voltages on the vertices in the graph? Algebraically, this is a solution v to the linear system

Lv = iext.

This system has problems owing to the fact that L is singular. Nevertheless, we have:

1. Lv = iext has a solution iff iext ⊥ 1, i.e., the net current flowing into the network is zero.

2. Solutions to the system are unique up to constants. That is, v is a solution if and only if v + c1 is a
solution for every c ∈ R.
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A canonical solution to this system is given by the Moore-Penrose pseudo-inverse of L. The general
definition is kind of complicated, but for symmetric matrices, it’s characterized as follows:

Definition 1. The pseudo-inverse of a symmetric matrix L, written L+, is the matrix such that

1. Im(L+) = Im(L), and

2. LL+ = Π where Π is the symmetric matrix that projects onto Im(L).

As usual, it’s easiest to think about L+ in terms of the eigendecomposition of L. Let 0 = λ1 ≤ λ2 ≤
. . . λn be the eigenvalues of L with corresponding orthonormal eigenvectors ψ1 = 1, ψ2, . . . , ψn. Then we
can write

L =
n∑

i=1

λiψiψ
T
i =

n∑
i=2

λiψiψ
T
i .

The pseudoinverse is given by

L+ =

n∑
i=2

1

λi
ψiψ

T
i .

So given a linear system Lv = iext where iext ⊥ 1, we can take the canonical solution v = L+iext.
This is the “balanced” solution, i.e., the one such that v ⊥ 1.

2 Effective Resistance

Fix two vertices a, b in a resistor network. We can think of the network as a one large resistor connecting a
and b. What is the resistance of this equivalent resistor?

Recalling Ohm’s Law, i(a, b) = (v(a)− v(b))/r(a,b), we can define the effective resistance Reff(a, b) =
v(a)− v(b) where v is the vector of induced potentials when one unit of current enters the network at a and
exits at b. That is, v is the solution to

Lv = 1a − 1b,

i.e., v = L+(1a − 1b) and we are interested in v(a)− v(b). Thus,

Reff(a, b) = ⟨1a − 1b, L
+(1a − 1b)⟩ = ∥L+/21a − L+/21b∥2

where L+/2 is the matrix square root of positive semidefinite L+, explicitly given by

L+/2 =

n∑
i=2

1√
λi
ψiψ

T
i

using the decomposition above.

Example 2. Consider the path graph between vertices 1 and n with resistors of resistance r1,2, . . . , rn−1,n

connecting them. To compute the effective resistance between 1 and n, we can repeatedly use Ohm’s Law
to solve for the induced potentials when one unit of current enters at 0 and exits at n. WLOG we can take
v(0) = 1. Conservation of flow through vertex 1 tells us that one unit of current must flow across edge
(1, 2). By Ohm’s Law, this means v(1) = −r1,2. Continuing, we get that v(n) = −r1,2−· · ·− rn−1,n. And
so the effective resistance Reff(1, n) = r1,2 + · · ·+ rn−1,n.
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Example 3. Now consider two vertices a and b with parallel edges of resistance r1, . . . , rk connecting
them. The weight of an edge is the inverse of the resistance, so this is a weighted graph with k parallel
edges of weights 1/r1, . . . , 1/rk. By linearity, this is equivalent to a graph with a single edge of weight
1/r1 + · · ·+ 1/rk between a and b, which corresponds to effective resistance 1/(1/r1 + . . . , 1/rk).

You can interpret effective resistance as a measure of distance between vertices in a graph. (Actually, it
literally is a metric.) When two vertices are connected only by a few long paths, the effective resistance is
large. When they are connected by many short paths, the effective resistance is small.

3 Spectral Sparsification

Given a dense graph G, can we find another graph H that approximates G in the sense that

1. H preserves the cuts of G: (1− ε)ϕ(G) ≤ ϕ(H) ≤ (1 + ε)ϕ(G),

2. Effective resistances in H approximate those in G,

3. Solutions v to linear equations LHv = b approximate those to LGv = b,

4. The eigenvalues of LG and LH are similar?

The following definition of approximation implies all of the above:

Definition 4. A weighted graph H is an ε-approximation to G if

(1− ε)LG ⪯ LH ⪯ (1 + ε)LG.

Here, A ⪯ B means that A precedes B in the Loewner order on PSD matrices: B − A is a positive
semidefinite matrix.

One interpretation of expanders is that they are are sparse approximations to the complete graph. We
can see that this is true in the above sense.

Proposition 5. If H is a d-regular γ-spectral expander on n vertices, then H is a (1− γ)-approximation to
G = d

nKn.

Proof. I’ll only prove that γLG ⪯ LH . The other direction is similar. To do this, it suffices to show that for
every f , we have ⟨f, (LH − γLG)f⟩ ≥ 0. Since LGf = LHf = 0 whenever f ∈ span{1}, it suffices to
show this for f ⊥ 1. Since for any f ⊥ 1 we have LGf = df , and by spectral expansion, ⟨f, LHf⟩ ≥ γd,
it follows that

⟨f, (LH − γLG)f⟩ = ⟨f, LHf⟩ − γd∥f∥2 ≥ 0.

Theorem 6. Every weighted undirected graph G has an ε-approximation H with O(n log n/ε2) edges.

Proof. We give a simple randomized algorithm for sampling H . For every e ∈ E, set

wH
e =

{
wG

e
pe

with probability pe
0 with probability 1− pe
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where pe = C · wG
e · Reff(e) for C = O(log n/ε2) to be chosen later. That is, we include each candidate

edge with probability proportional to its effective resistance, and when we do include it, we give it weight
we/pe. We can assume that each pe ≤ 1 by splitting it into multiple candidate edges otherwise.

If you believe me that it suffices to take C = O(log n/ε2), then in expectation, the total number of edges
in the graph is

∑
(a,b)∈E

pe = C
∑

(a,b)∈E

w(a,b)⟨1a − 1b, L
+(1a − 1b)⟩

= C
∑

(a,b)∈E

w(a,b)Tr(L
+(1a − 1b)(1a − 1b)

T )

= C
∑

(a,b)∈E

w(a,b)Tr(L
+L(a,b))

= C Tr

L+
∑

(a,b)∈E

w(a,b)L(a,b)


= C Tr(L+L)

= C Tr(ΠIm(L))

= C(n− 1) = O(n log n/ε2).

Here,L(a,b) is the combinatorial Laplacian of the single edge (a, b), i.e., the operator for which ⟨f, L(a,b)f⟩ =
(f(a)− f(b))2. A Chernoff bound shows that the number of edges is within a constant factor of this bound
with all but exponentially small probability.

Remark 7. What’s going on here? A consequence of Kirchoff’s “matrix tree theorem” is that we ·Reff(e) is
the probability that an edge e appears in a random spanning tree ofGwhen a tree is sampled with probability
proportional to its edge weights. Since every spanning tree has n − 1 edges, the sum of these probabilities
is n − 1. The connection between spanners and effective resistance sampling has led to subsequent fast
algorithms for constructing sparsifiers, e.g., Kapralov and Panigraphy, “Spectral sparsification via random
spanners.”

It now remains to show that H is indeed a good spectral sparsifier. By construction, it has the right
expectation:

E[LH ] =
∑

(a,b)∈E

E[w(a,b)(1a − 1b)(1a − 1b)
T ] = LG.

The basic idea is to use a matrix Chernoff bound to show that LH is highly concentrated around its expec-
tation.

Theorem 8. Let X1, . . . , Xm be independent (n × n) symmetric PSD matrices where ∥Xi∥ ≤ R almost
surely for every i. Let X =

∑m
i=1Xi and let µmin and µmax be the minimum and maximum eigenvalues of

E[X]. Then for ε ∈ (0, 1),

Pr[λmin(X) ≤ (1− ε)µmin] ≤ ne−ε2µmin/2R

Pr[λmax(X) ≥ (1 + ε)µmax] ≤ ne−ε2µmax/3R.
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I’ll only prove that LH ⪯ (1 + ε)LG with high probability. The lower bound is similar, but requires a
bit of care as we want to carry out the argument in the subspace orthogonal to 1. First, we’ll convert the
statement we want to show into an easier form to work with. By pre- and post-multiplying by the PSD
matrix L+/2

G , we see that it’s equivalent to

L
+/2
G LHL

+/2
G ⪯ (1 + ε)L

+/2
G LGL

+/2
G = (1 + ε)Π

where Π is the projection onto Im(LG). So it’s enough to show that the maximum eigenvalue ofL+/2
G LHL

+/2
G

is at most (1 + ε) with high probability.
We will now prove this using the matrix Chernoff bound. Let

Xe =

{
we
pe
L
+/2
G LeL

+/2
G with probability pe

0 otherwise.

Let X =
∑

e∈E Xe so that X = L
+/2
G LHL

+/2
G .

We first observe that by linearity,

E[X] = E[L+/2
G LHL

+/2
G ] = L

+/2
G E[LH ]L

+/2
G = L

+/2
G LGL

+/2
G = Π

which has maximum eigenvalue 1.
Next, we check that

∥Xe∥ ≤ we

pe
∥L+/2

G LeL
+/2
G ∥

≤ we

pe
Tr(L

+/2
G (1a − 1b)(1a − 1b)

TL
+/2
G )

=
we

pe
Tr(L

+/2
G L

+/2
G (1a − 1b)(1a − 1b)

T )

=
we

pe
Tr(L+

G(1a − 1b)(1a − 1b)
T )

=
we

pe
Reff(e) =

1

C
.

Thus, the matrix Chernoff bound tells us that

Pr[λmax(X) ≥ 1 + ε] ≤ ne−3Cε2 .

To get this below a constant, it suffices to take C = O(log n/ε2).
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