
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 2:

BLR Test, Influence

Reading.

• O’Donnell, Analysis of Boolean Functions §1.4-1.5, 2.1-2.2

1 Using the Fourier representation

The Fourier coefficients of a function f encode interesting information about its “average case” behavior.
For example:

Proposition 1.
E

x∼{−1,1}n
[f(x)] = f̂(∅).

Proof. This follows from the fact that E[f ] = ⟨f, 1⟩ = ⟨f, χ∅⟩ = f̂(∅).

Similarly, we can compute the variance of f , i.e., the variance of the random variable f(x) where x is
uniformly random.

Proposition 2.
Var

x∼{−1,1}n
[f(x)] =

∑
S ̸=∅

f̂(S)2.

Proof. We calculate

Var
x∼{−1,1}n

[f(x)] = E[(f − E[f ])2]

= ⟨f − E[f ], f − E[f ]⟩
= E[f2]− (E[f ])2

=

∑
S⊆[n]

f̂(S)2

− f̂(∅)2

where the last equality follows from Parseval and Proposition 1. The same calculation using Plancharel
in place of Parseval shows that the covariance between two functions f, g is

∑
S ̸=∅ f̂(S)ĝ(S).

Finally, an operation on two functions that comes up from time to time is the convolution.

1



Definition 3. For f, g : {−1, 1}n → R, define the convolution

(f ∗ g)(x) = E
y∼{−1,1}n

[f(y)g(x ◦ y)] = E
y∼{−1,1}n

[f(x ◦ y)g(y)]

where ◦ denotes the entrywise product.

If f, g : {−1, 1}n → [0, 1] represent the probability density functions of random variables X,Y , then
f ∗ g is the probability density of X ◦ Y .

Theorem 4.
f̂ ∗ g(S) = f̂(S)ĝ(S).

Proof.

f̂ ∗ g(S) = E
x∼{−1,1}n

[(f ∗ g)(x)χS(x)]

= E
x∼{−1,1}n

[
E

y∼{−1,1}n
[f(y)g(x ◦ y)]χS(x)

]

= E
z∼{−1,1}n

[
E

y∼{−1,1}n
[f(y)g(z)]χS(y ◦ z)

]
= E

y,z∼{−1,1}n
[f(y)g(z)χS(y)χS(z)]

= f̂(S)ĝ(S).

2 BLR Test

Suppose your friend hands you a Boolean function f : {−1, 1}n → {−1, 1} and tells you it’s supposed to
be a parity function. The way the function is given to you is as a “black box”, meaning you can evaluate
it at points x ∈ {−1, 1}n of your choice, but you otherwise can’t see the internal structure of how f is
constructed or computed. How can you verify that f is indeed a parity function?

If you want to do this perfectly, you’ll need to query f at all 2n locations, since your friend could have
given you a function that agrees with a parity on all but one point. But if you are willing to settle for an
approximation, you can be convinced that f is close to a parity using only three queries!

This is the kind of problem studied in the field of property testing. A property testing problem is a set
P of Boolean functions (e.g., the set of all parity functions), called a “property”. An instance of such a
problem is a Boolean function f . A tester makes a small number of (possibly random) queries to f and has
the following guarantees.

Completeness: If f ∈ P , the test accepts with high probability.

Soundness: If f is “far from” P , the test rejects with high probability. For a parameter ε > 0, we say that
f is ε-far from P if dist(f, g) ≥ ε for all g ∈ P , where dist(f, g) = Prx∼{−1,1}n [f(x) ̸= g(x)].

2



Property testing (in particular, the parity tester) was originally motivated by self-testing/correcting
programs and probabilistically checkable proofs. Since then, it has blossomed into a vibrant area of re-
search in its own right. See, e.g., Oded Goldreich’s book https://www.wisdom.weizmann.ac.
il/~oded/pt-intro.html or Sofya Raskhodnikova’s BU class http://cs-people.bu.edu/
sofya/sublinear-course/.

The three-query BLR parity tester is motivated by the following observation. A parity function χS

respects multiplication in the sense that for every x, y,

χS(x ◦ y) =
∏
i∈S

xiyi =

(∏
i∈S

xi

)(∏
i∈S

yi

)
= χS(x)χS(y).

And in fact, the converse is true: Every Boolean function that respects multiplication is a parity on some
subset of variables. The BLR tester is based on the idea that this property holds robustly. That is, a Boolean
function respects multiplication for “most” inputs if and only if its is close to a parity function. Here is the
tester:

BLR Tester Given query access to a function f : {−1, 1}n → {−1, 1}:

1. Sample x, y ∼ {−1, 1}n independently.

2. Query f at x, y, and x ◦ y.

3. Accept if f(x ◦ y) = f(x)f(y). Reject otherwise.

2.1 Analysis of the BLR Test

Completeness: If f is a parity function, then the tester accepts with probability 1, since f(x ◦ y) =
f(x)f(y) for every pair x, y.

Soundness: This follows from the contrapositive of the following theorem. Strictly speaking, this only
shows that if f is ε-far from every parity, then the test rejects with small probability ε. But the soundness
error can be amplified by repeating the test k times independently and rejecting if any of the k runs rejects.
Thus, using 3k queries, the BLR test is guaranteed to reject any ε-far function f with probability at least
1− (1− ε)k.

Theorem 5. If the BLR test accepts f with probability 1− ε, then f is ε-close to a parity function.

Proof. Observe that

1

2
+

1

2
f(x)f(y)f(x ◦ y) =

{
1 if f(x)f(y) = f(x ◦ y)
0 otherwise,

so

Pr[test accepts f ] = E
x,y

[
1

2
+

1

2
f(x)f(y)f(x ◦ y)

]
=⇒ 2Pr[test accepts f ]−1 = E

x,y
[f(x)f(y)f(x ◦ y)] .

3



Estimating this latter quantity, we get

E
x,y

[f(x)f(y)f(x ◦ y)] = E
x

[
f(x)E

y
[f(y)f(x ◦ y)]

]
= E

x
[f(x) · (f ∗ f)(x)]

=
∑
S⊆[n]

f̂(S)f̂ ∗ f(S) by Plancharel

=
∑
S⊆[n]

f̂(S)3 by Thm 4

≤ max
S⊆[n]

f̂(S) ·
∑
S⊆[n]

f̂(S)2

= max
S⊆[n]

f̂(S) by Parseval.

Hence if the BLR test accepts f with probability at least 1− ε, there exists an S such that

2(1− ε)− 1 ≤ f̂(S) = ⟨f, χS⟩ = 1− 2 dist(f, χS).

Rearranging shows that there exists an S such that dist(f, χS) ≤ ε.

Historical notes: The BLR test was discovered around 1990 by Blum, Luby, and Rubinfeld, who gave
a combinatorial proof. The Fourier analytic proof here is due to Bellare, Coppersmith, Håstad, Kiwi, and
Sudan. The parity test usually goes by the name “linearity test” because the parity functions are exactly the
linear functions over Fn

2 .

3 Influence

We’ll be studying a number of “proto-complexity” measures of Boolean functions including influence, noise
stability, and spectral concentration using Fourier analysis. These quantities are interesting in their own
right, as well as useful for downstream applications in circuit complexity, pseudorandomness, learning, and
more.

For a string x ∈ {−1, 1}n, an index i ∈ [n], and b ∈ {−1, 1}.

• x⊕i = (x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn).

• x(i→b) = (x1, x2, . . . , xi−1, b, xi+1, . . . , xn)

Definition 6 (Pivotal coordinate). A coordinate i ∈ [n] is pivotal for f at input x if f(x) ̸= f(x⊕i)

Definition 7 (Influence). The influence of coordinate i on f is the probability that i is pivotal for a random
input:

Infi[f ] = Pr
x∼{−1,1}n

[f(x) ̸= f(x⊕i)]

Influence has a nice interpretation in terms of social choice. In social choice theory, one thinks of the
function f as a voting rule mapping n votes for candidates “+1” and “-1” to an election outcome. Under
what’s called the “impartial culture assumption” that votes are uniformly random, the influence of coordinate
i captures the probability that i’s vote swings the election.

4



Example 8. Let’s estimate the influences of a few natural voting rules.

• The function ANDn elects candidate −1 if and only if all voters vote for −1. For every i, its influence
is Infi(ANDn) = Prx∼{−1,1}n [x1 = x2 = · · · = xi−1 = xi+1 = · · · = xn = −1] = 2−n+1.

• For odd n, the function MAJn elects the candidate that wins the majority vote. For every i, its
influence is

Infi(MAJn) =

(
n− 1
n−1
2

)
· 2−n+1 ≈

√
2/π√
n

.

This follows from Stirling’s Formula, which says that m! = (m/e)m(
√
2πm+O(1/

√
m)).

• For a coordinate j, define the j’th dictator function by χj(x) = xj . Then we have

Infi(χj) =

{
1 if i = j

0 otherwise.

5


