
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 20:

Existential Bounds, Reed-Solomon Codes

Reading.

• Guruswami-Rudra-Sudan §4, 5, 10

Here’s a reminder of some definitions:

• An (n, k, d)q code is a subset C ⊆ Σn where |Σ| = q. Here, n is the block length, k = logq |C| is the
dimension, and d = minv,w∈C ∆(v, w) is the distance of the code.

• The rate of a code is R = k/n. The relative distance is δ = d/n.

• An [n, k, d]q linear code is one for which C is a k-dimensional subspace of Σn = Fn
q .

The [2r − 1, 2r − r− 1, 3]2-Hamming and [2r, r, 2r−1]2-Hadamard codes achieve rates and distances at
the extreme ends of a spectrum. Hamming gets excellent rate ≈ (n− log n)/n, but terrible relative distance
3/n. Meanwhile, Hadamard gets terrible rate log n/n but excellent relative distance 1/2. What kinds of
tradeoffs between rate and relative distance are achievable in general?

We’re often interested in the asymptotic behavior of families of codes, one for every block length. Can
we construct families of codes {Cn}, where Cn ⊆ Σn, such that both

R := lim inf
n→∞

kn
n
, δ := lim inf

n→∞

dn
n

are both constant? Such codes are called “asymptotically good.” What kinds of tradeoffs, i.e., pairs (R, δ) ∈
[0, 1]× [0, 1] are achievable?

1 Hamming Bound

An impossibility result (rate upper bound) follows from the packing interpretation of codes. If a code C
has distance d, then we can construct disjoint Hamming balls of radius ⌊(d− 1)/2⌋ around the points in C.
Each such ball contains

Vol2(⌊(d− 1)/2⌋, n) =
⌊(d−1)/2⌋∑

i=0

(
n

i

)
points in {0, 1}n. On the other hand, there is only a total of 2n points in then entire space {0, 1}n. So we
conclude

Theorem 1 (Binary Hamming bound). Let C ⊆ {0, 1}n be a code with distance d. Then

|C| ≤ 2n

Vol2(⌊(d− 1)/2⌋, n)
.

1

To interpret this bound, let’s estimate Vol2(⌊(d − 1)/2⌋, n). I think the most enlightening thing to do
is to estimate it from above, even though this isn’t technically useful for proving a rate upper bound. Let
p ≤ 1/2. Then

Vol2(pn, n) =

pn∑
i=0

(
n

i

)

≤ 1

ppn(1− p)n−pn

pn∑
i=0

(
n

i

)
pi(1− p)n−i

≤ 2H2(p)n
n∑

i=0

(
n

i

)
pi(1− p)n−i

= 2H2(p)n

where H2(p) := −p log2(p)−(1−p) log2(1−p) is the binary entropy function, which captures the Shannon
entropy of a single bit that comes up 1 with probability p. Using Stirling’s approximation (see Proposition
3.3.3 in GRS), one can show that this upper bound is basically tight: Vol2(pn, n) ≥ 2H2(p)n−o(n). Plugging
this into Theorem 1 gives

|C| ≤ 2n−H2(δ/2)n+o(n) =⇒ k ≤ n(1−H2(δ/2)) + o(n).

Thus, asymptotically, the best rate of code with relative distance δ is at most 1−H2(δ/2). These argument
all work over larger alphabets as well, giving an asymptotic rate upper bound of 1 − Hq(δ/2) for q-ary
codes.

2 Gilbert-Varshamov Bound

Let us now see what rate vs. distance tradeoffs are actually achievable by codes. The following positive
result is known as the GV bound:

Theorem 2 (Gilbert-Varshamov Bound). For δ < 1/2, there exists a code family with relative distance δ
and rate R = 1−H2(δ). Moreover, a random linear code achieves rate R = 1−H2(δ)−ε with probability
at least 1− 2−εn.

Proof of Part 1. We construct a code of distance d greedily as follows:

• Initialize C = ∅

• While there exists w ∈ {0, 1}n such that ∆(w, v) ≥ d for every v ∈ C, add w to C.

By construction, this code has distance d. Moreover, the balls of radius d − 1 around codewords must
cover the entire space: ⋃

v∈C
B(v, d− 1) = {0, 1}n.

This implies

|C| ≥ 2n

Vol2(d− 1, n)
≥ 2n−H2((d−1)/n)n.

Taking logs shows that the rate of this code is at least 1−H2((d− 1)/n) ≥ 1−H2(δ).

2

Proof of Part 2. Let k = (1 − H2(δ) − ε)n be our target dimension. Choose a random linear code by
taking its generator matrix G ∈ Fk×n

2 to have independent, uniform entries. We need to show that with high
probability, G has full rank k and induces a code with minimum distance at least d = δn. Both properties
follow as long as for every nonzero message x ∈ Fk

2 , we have wt(xG) ≥ d, where wt denotes Hamming
weight.

To see this, we use the fact that for a random G, the vector xG is uniformly random to bound for each
individual message x:

Pr
G
[wt(xG) < d] ≤ Vol2(d− 1, n)

2n
≤ 2H2(δ)n−n.

Union bounding over all 2k messages gives

Pr
G
[∃x ̸= 0 : wt(xG) < d] ≤ 2k−H2(δ)n−n ≤ 2−εn.

3 Reed-Solomon Codes

Definition 3. Let k ≤ n ≤ q and take Σ = Fq. Fix a set A = {α1, . . . , αn} ⊆ Fq of distinct “evaluation
points.” Define the Reed-Solomon code RSA[n, k]q by its encoding map:

Enc(x0, . . . , xk−1) = (px(α1), . . . , px(αn))

where
px(α) = x0 + x1α+ x2α

2 + · · ·+ xk−1α
k−1.

The Reed-Solomon code is a linear code of dimension k. Its generator matrix is

GA =


1 1 . . . 1
α1 α2 . . . αn
...

αk−1
1 αk−1

2 . . . αk−1
n

 .

Claim 4. The Reed-Solomon code RSA[n, k]q has distance d = n− k + 1.

Proof. Let (px(α1), . . . , px(αn)) be a non-zero codeword. Since px is a non-zero polynomial of degree k, it
must have at most k− 1 zeroes. Therefore, the Hamming weight of this codeword is at least n− k+1.

Reed-Solomon codes actually match a simple impossibility result called the Singleton bound: Every
code of distance d and dimension k has d ≤ n − k + 1. (The proof of this is by the pigeonhole principle.
Given a code of distance d, delete the first d−1 symbols from each codeword. This gives |C| distinct strings
in Σn−d+1, so qk ≤ |C| ≤ qn−d+1.)

The downside is that the alphabet is very large – larger than the block length. This turns out to be
inherent, as there are strictly stronger impossibility results than the Singleton bound (e.g., the “Plotkin
bound”) that hold over small alphabets. So it’s a natural question to ask whether one can trade the large
alphabet size of the explicit Reed-Solomon code for a slightly worse rate vs. distance tradeoff.

A simple way to turn the Reed-Solomon code into a binary code is to just further encode each symbol
px(αi) as a binary string of length log q. This produces a code with block length N = n log q, but the same
dimension and distance. So the rate and relative distance of the new code are now both at most 1/ log q.

3

4 Concatenated Codes

The idea to get an improved binary code is to perform each encoding of Reed-Solomon symbol px(αi) using
another error-correcting code. The upshot is that the number of codewords we need for the second step is
small, only q, so we can afford to do things like brute force search for such codes.

A concatenated code combines an outer code Cout ⊆ ΣN with an inner code Cin ⊆ σn where |Cin| ≥
|Σ|. The result is a concatenated code C = Cout ◦ Cin, for which encoding is performed via

Enc(x) = (Encin((Encout(x))1), . . . ,Encin((Encout(x))N))

If Cout is an (N,K,D)qk -code and Cin is an (n, k, d)q-code, then the concatenated code C is an
(Nn,Kk,Dd)-code. So the rate and relative distance of the concatenated code are the products of the
rates and relative distances of the constituent codes.

4.1 Zyablov Bound

Suppose we take

• The outer code Cout is a Reed-Solomon code with rate Rout and relative distance δout = 1−Rout.

• The inner code Cin meets the Gilbert-Varshamov bound. So it has rate Rin = 1−H2(δin) for relative
distance δin.

One can optimize over the choice of Rin to get the Zyablov bound:

R ≥ max
0≤r≤1−H2(δ)

r ·
(
1− δ

H−1
2 (1− r)

)
.

Codes asymptotically matching the Zyablov bound can be found in polynomial time. For example,
if Cout is an [N = Q − 1,K]Q Reed-Solomon code, then we need the inner code to have dimension
logQ = O(logN). An explicit linear code with this dimension matching the Gilbert-Varshamov bound can
be found in poly(N) time, e.g., by greedily constructing the parity check matrix.

4

