CS 599 B1: Math for TCS

Lecture 24: CSPs, Proofs, and LP Hierarchies

Mark Bun

Resources

- Ryan O'Donnell's lectures on CSPs, LP Hierarchies, and Proof Systems
- Monique Laurent's <u>A Comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre Relaxations for 0-1 Programming</u>
- Fleming, Kothari, and Pitassi, <u>Semialgebraic Proofs and Efficient</u> <u>Algorithm Design</u>

What are we doing?

This unit so far:

- Linear and semidefinite programming
- Using LP / SDP relaxations to approximately solve combinatorial optimization problems
- Paradigm: Exact OPT ≤ LP OPT
 Round LP solution back to an integral solution

Where we're going:

- What general class(es) of problems can we solve like this? <---
- To what extent are approximation algorithms based on LP/SDP relaxations automatable?
- Can we certify the *non-existence* of good solutions to combinatorial optimization problems?

CSP = Constraint Satisfaction Problem

CSP Instance: A list of constraints, each of the form $C_i = (\psi_i, V_i)$ where $\psi_i \in \Psi$ and $V_i \subseteq V$.

Goal: Assign variables to maximize number of satisfied $\psi_i(V_i)$ $(\text{Notequal}, (x_i, x_i)), (\text{NE}, (x_i, x_i))$

$$D = \{0,13\} \qquad \Psi = \{\text{Not-equal}, \{0,13\}\}$$

CSP = Constraint Satisfaction Problem

Domain
$$D$$
 e.g., $D = \{true, false\}$, $\{-1, +1\}$, $\{1, 2, ..., q\}$
Variables $V = x_1, ..., x_n$
Constraint Set $\Psi = \{\psi \mid \psi : D^* \rightarrow \{0, 1\}\}$

CSP Instance: A list of constraints, each of the form $C_i = (\psi_i, V_i)$ where $\psi_i \in \Psi$ and $V_i \subseteq V$.

Goal: Assign variables to maximize number of satisfied $\psi_i(V_i)$

Ex: MAX-3-COL
$$D = \{ \text{re b, green, blue } \} \Psi = \{ \text{NE} : \{ \text{re b, green, blue } \}^2 \longrightarrow \{ \text{D, 13} \} \}$$

CSP = Constraint Satisfaction Problem

$$\begin{array}{lll} \underline{\text{Domain}} & D & \text{e.g., } D = \{true, false\}, & \{-1, +1\}, & \{1, 2, \dots, q\} \\ \underline{\text{Variables}} & V = x_1, \dots, x_n \\ \underline{\text{Constraint Set}} & \Psi = \{\psi \mid \psi : D^* \rightarrow \{0, 1\}\} \end{array}$$

CSP Instance: A list of constraints, each of the form $C_i = (\psi_i, V_i)$ where $\psi_i \in \Psi$ and $V_i \subseteq V$.

Goal: Assign variables to maximize number of satisfied $\psi_i(V_i)$

Ex: MAX-EXACT-3-SAT
$$D = \{o,1\}$$

$$\Psi = \{oR(\cdot,\cdot,\cdot), oR(\overline{\cdot,\cdot,\cdot}), oR(\cdot,\overline{\cdot,\cdot,\cdot}), oR(\cdot,\overline{\cdot,\cdot,\cdot})\}$$

CSP = Constraint Satisfaction Problem

$$\begin{array}{lll} \underline{\text{Domain}} & D & \text{e.g., } D = \{true, false\}, & \{-1, +1\}, & \{1, 2, \dots, q\} \\ \underline{\text{Variables}} & V = x_1, \dots, x_n \\ \underline{\text{Constraint Set}} & \Psi = \{\psi \mid \psi : D^* \rightarrow \{0, 1\}\} \end{array}$$

CSP Instance: A list of constraints, each of the form $C_i = (\psi_i, V_i)$ where $\psi_i \in \Psi$ and $V_i \subseteq V$.

Goal: Assign variables to maximize number of satisfied $\psi_i(V_i)$

Ex: MAX-3-SAT
$$D = 50,15$$

$$\Psi = \begin{cases} OR(\cdot, \cdot, \cdot), OR(\overline{\cdot}, \cdot, \cdot), \\ OR(\cdot, \cdot), OR(\overline{\cdot}, \cdot), \\ OR(\cdot, \cdot), OR(\cdot, \cdot), \\ OR(\cdot, \cdot),$$

CSP Algorithmic Problems

For a CSP $L = (C_1, ..., C_m)$, define $OPT(L) = \max \text{ fraction of satisfiable constraints}$ $V_{i,j} V_{i,j} V_{i,j$

Satisfiability: Given L, are all constraints satisfiable? (OPT(L) = 1?) E.g. decision version of SAT, 3-COL, etc.

Optimization: Given L, find an assignment that approximately maximizes the number of satisfied constraints $(\Rightarrow \text{certify that } OPT(L) \ge \beta)$

<u>Certification:</u> Given L, provide a "proof" that $OPT(L) \leq \beta$

CSP Satisfiability

Sometimes it's easy:

2-SAT, Horn-SAT, LIN-EQ-MOD2, bipartiteness testing ∈ P

decision was of MAX-cut

Sometimes it's hard:

3-SAT, 3-COL, ... are NP-complete

Schaefer '78: When $D = \{0, 1\}$, every CSP is either in P or NP-complete Dichotomy Conjecture [Fejer-Vardi '93]: Every CSP is either in P or NP-complete

Proved (independently) by Bulatov and Zhuk in 2017

CSP Optimization & Certification

Optimization (α, β) -approximation algorithm: Given L with $OPT(L) \ge \beta$, find an assignment with value α . $\alpha \in \beta$

Exercise 10.2 gave a $\left(\frac{3}{4}\beta,\beta\right)$ -approximation to MAX-3SAT for every β Goemans-Williamson is a $(0.878\beta,\beta)$ -approximation to MAX-CUT for every β

Certification (α, β) -certifier: Given L with $OPT(L) \leq \alpha$, output a proof that $OPT(L) \leq \beta$.

Exercise 10.2 gave a $\left(\frac{3}{4}\beta,\beta\right)$ -certifier for every β

In general, an (α, β) -approximation is also an (α, β) -certifier

What are we doing?

This unit so far:

- Linear and semidefinite programming
- Using LP / SDP relaxations to approximately solve combinatorial optimization problems
- Paradigm: Exact OPT ≤ LP OPT

Round LP solution back to an integral solution

Where we're going:

- What general class(es) of problems can we solve like this? 650
- To what extent are approximation algorithms based on LP/SDP relaxations automatable?
- Can we certify the *non-existence* of good solutions to combinatorial optimization problems?

Recall: Bipartite matching LP

$$\max \sum_{(\ell,r) \in E} x_{\ell,r}$$
s. t.
$$\sum_{r \sim \ell} x_{\ell,r} \leq 1 \quad \forall \ell \in L$$

$$\sum_{\ell \sim r} x_{\ell,r} \leq 1 \quad \forall r \in R$$

$$x_{\ell,r} \geq 0 \quad \forall (\ell,r) \in E$$

$$\chi_{\ell,r} \geq 0 \quad \forall (\ell,r) \leq E$$

Recall: Bipartite matching LP

$$\max x_{1,3} + x_{2,3} + x_{2,4}$$
s.t. $x_{1,3} \le 1$

$$x_{2,3} + x_{2,4} \le 1$$

$$x_{1,3} + x_{2,3} \le 1$$

$$x_{2,4} \le 1$$

$$x_{1,3}, x_{2,3}, x_{2,4} \ge 0$$

 (β,β) -approximation algorithm: Solve the LP and produce an integral solution, e.g., $x_{1,3}=1, x_{2,3}=0, x_{2,4}=1$

Recall: Bipartite matching LP

$$\max x_{1,3} + x_{2,3} + x_{2,4}$$
s.t. $x_{1,3} \le 1$

$$x_{2,3} + x_{2,4} \le 1$$

$$x_{1,3} + x_{2,3} \le 1$$

$$x_{2,4} \le 0$$

$$y_{2,4} \ge 0$$

 (β, β) -certifier: Find a combination of constraints that certifies an upper bound on $x_{1,3} + x_{2,3} + x_{2,4}$ a.k.a. solve the dual LP a.k.a. find a min vertex cover

Goal: Prove that $x_{1,3} + x_{2,3} + x_{2,4} \le 2$

Indeterminates: x_1, \dots, x_n

Axioms: $\langle a, x \rangle \leq b$

Proof lines: Linear inequalities

Inference rules: Can derive non-negative linear combinations of previous

proof lines

Goal: Prove that $\langle c, x \rangle \leq \beta$

Properties:

- Soundness: Any statement proved is true
- Completeness: Any true statement can be proved (LP duality theorem)
- Automatizable: Can efficiently find a proof of any provable statement

LPs as Proof Systems for Integer Programs

Indeterminates: x_1, \dots, x_n

Axioms: $\langle a, x \rangle \leq b$ that are implied by IP axioms

Proof lines: Linear inequalities

Inference rules: Can derive non-negative linear combinations of previous proof lines

Goal: Prove that $\langle c, x \rangle \leq \beta$

Properties:

OPT E LMOPT

- Soundness: Any statement proved is true
- Completeness: Any true statement can be proved (LP duality theorem)
- Automatable: Can efficiently find a proof of any provable statement

Toward Completeness

Idea: Add extra (linear) axioms and derivation rules that are consistent with integer solutions

Cutting Planes

New derivation rule: If a is integral, then $\langle a, x \rangle \leq b \rightarrow \langle a, x \rangle \leq \lfloor b \rfloor$

$$\chi_1 + 2\chi_2 + \chi_3 \subseteq 7.5$$
 $\chi_1 + 2\chi_2 + \chi_3 \subseteq 7$

Toward Completeness

Idea: Add extra (linear) axioms and derivation rules that are consistent with integer solutions

Lovasz-Schrijver and Sherali-Adams

New axioms: (True) inequalities involving <u>low-degree</u> polynomials of indeterminates

- 1) Extend: Add polynomial constraints implied by integrality
- 2) Linearize: Replace monomials with placeholder variables to get an LP
- 3) Project: Round solution over placeholder variables

Example: MAX-SAT

$$f(x) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_3) \land (x_1 \lor \overline{x_2}) \land \overline{x_1}$$

max
$$z_1 + z_2 + z_3 + z_4$$

s.t.
$$x_1 + x_2 + (1 - x_3) \ge z_1$$

 $x_1 + x_3 \ge z_2$
 $x_1 + (1 - x_2) \ge z_3$
 $(1 - x_1) \ge z_4$
 $x_i, z_i \in \{0, 1\}$ 06 16, 74 61

Level 2 Sherali-Adams

$$f(x) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_3) \land (x_1 \lor \overline{x_2}) \land \overline{x_1}$$

max
$$x_4 + x_5 + x_6 + x_7$$

s.t. $x_1 + x_2 + (1 - x_3) \ge x_4$
 $x_1 + x_3 \ge x_5$
 $x_1 + (1 - x_2) \ge x_6$
 $(1 - x_1) \ge x_7$
 $0 \le x_i \le 1$
Extend via new degree-2 of $x_1 x_2 \ge 0$, ... $x_1 (x_1 - x_2) \ge 0$, ... $x_1 (x_1 - x_2) \ge 0$, ... $(1 - x_1)(1 - x_2) \ge 0$, ... $(1 - x_1)(1 - x_2) \ge 0$, ...

Extend via new degree-2 constraints:

$$x_1 x_2 \ge 0, ...$$

 $x_1 (1 - x_2) \ge 0, ...$
 $(1 - x_1)(1 - x_2) \ge 0, ...$

$$(1-x_1)(1-x_2) \ge 0, \dots$$

$$x_1(x_1+x_2+(1-x_3)) \ge x_1x_1, \dots$$

$$(1-x_1)(x_1+x_2+(1-x_3)) \ge (1-x_1)x_1, \dots$$

Level 2 Sherali-Adams

$$f(x) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_3) \land (x_1 \lor \overline{x_2}) \land \overline{x_1}$$

max
$$x_4 + x_5 + x_6 + x_7$$

s.t. $x_1 + x_2 + (1 - x_3) \ge x_4$
 $x_1 + x_3 \ge x_5$
 $x_1 + (1 - x_2) \ge x_6$
 $(1 - x_1) \ge x_7$
 $0 \le x_i \le 1$

<u>Linearize</u> by replacing $x_i x_j$ with $y_{\{i,j\}}$, x_i with $y_{\{i\}}$:

$$x_{1}x_{2} \ge 0, \dots \qquad y_{1}x_{1} > 0$$

$$x_{1}(1-x_{2}) \ge 0, \dots \qquad y_{1}x_{2} - y_{1}x_{2} \ge 0$$

$$(1-x_{1})(1-x_{2}) \ge 0, \dots \qquad y_{1}x_{2} - y_{1}x_{2} \ge 0$$

$$x_{1}(x_{1}+x_{2}+(1-x_{3})) \ge x_{1}x_{1}, \dots$$

$$(1-x_{1})(x_{1}+x_{2}+(1-x_{3})) \ge (1-x_{1})x_{1}, \dots$$

Level d Sherali-Adams

Given:
$$K = \{\langle a_1, x \rangle \ge 0, \dots, \langle a_m, x \rangle \ge 0\}$$

1. Extend: Include every constraint of the form

$$\underbrace{\langle a_i, x \rangle \cdot \prod_{j \in S} x_j \prod_{k \in T} (1 - x_k)}_{\text{degree } \leq \delta} \geq 0$$

- a. Replace every appearance of x_j^c with x_j
- b. Replace every appearance of $\prod_{y \in S} x_j$ with y_S

The resulting relaxation is called $SA_d(K)$

Facts about Sherali-Adams

• Each SA_d is a tightening of SA_{d-1} : It preserves all integral solutions, while removing some fractional ones

• SA_{n+1} recovers the original integral feasible set

• Each SA_d involves roughly $m\cdot n^d$ constraints and can be optimized over in $poly(m\cdot n^d)$ time.

What's it good for?

- Can get a
- For a given size LP relaxation, Sherali-Adams is essentially optimal [Chan-Lee-Raghavendra-Steurer13]