CS 599 B1: Math tor TCS

Lecture 24: CSPs, Proofs, and LP Hierarchies

Mark Bun

Resources

e Ryan O’Donnell’s lectures on CSPs, LP Hierarchies, and Proof Systems

* Monique Laurent’s A Comparison of the Sherali-Adams, Lovasz-
Schrijver, and Lasserre Relaxations for 0-1 Programming

* Fleming, Kothari, and Pitassi, Semialgebraic Proofs and Efficient
Algorithm Design

What are we doing?

This unit so far:
- Linear and semidefinite programming

- Using LP / SDP relaxations to approximately solve combinatorial optimization

problems
- Paradigm: ExactOPT < LPOPT

Round LP solution back to an integral solution

Where we’re going:
- What general class(es) of problems can we solve like this? <—

- To what extent are approximation algorithms based on LP/SDP relaxations
automatable?

- Can we certify the non-existence of good solutions to combinatorial
optimization problems?

A Class of Problems: CSPs

CSP = Constraint Satisfaction Problem
Domain D e.g., D = {true, false}, {—1,+1}, {1,2,..,q}

Variables V = x4, ...,x, 1y 0’ 1013
ConstraintSet ¥ ={y | Y:D* - {0, 1}} Wi, x‘ \
/ 3, 1, 2
v.

CSP Instance: A list of constraints, each of the form C; = (y;,V;)

wherey; e ¥ andV; € V.
Goal: Assign variables to maximize number of satisfied y; (V;) N

Ay
(Navosmat, (€0,50) | (VE, (4, 1) (e Qe x)
Ex: MAX-CUT A5 Ly

D=%0,1% P o= { Nok-equl §0,1% =0, 8}

A Class of Problems: CSPs

CSP = Constraint Satisfaction Problem

Domain D e.g., D ={true, false}, {—1,+1}, {1,2,..,q}
Variables V = x4,...,x,

ConstraintSet W ={y | ¥:D* - {0,1}}

CSP Instance: A list of constraints, each of the form C; = (y;,V;)
wherey; e ¥ andV; € V.

Goal: Assign variables to maximize number of satisfied ; (V;)

Ex: MAX-3-COL
D = freb auan Mach W= §NE " ©odgeen e’ — 2003

A Class of Problems: CSPs

CSP = Constraint Satisfaction Problem

Domain D e.g., D ={true, false}, {—1,+1}, {1,2,..,q}
Variables V = x4,...,x,

ConstraintSet W ={y | ¥:D* - {0,1}}

CSP Instance: A list of constraints, each of the form C; = (y;,V;)

wherey; e ¥ andV; € V.
Goal: Assign variables to maximize number of satisfied ; (V;)

o TS A T PRV VYA (xqvxy V)

Ex: MAX-EXACT-3-SAT \/“'3\—/ N~

D=y W= forle), oalThn), 08047, oulm

A Class of Problems: CSPs

CSP = Constraint Satisfaction Problem

Domain D e.g., D ={true, false}, {—1,+1}, {1,2,..,q}
Variables V = x4,...,x,

ConstraintSet W ={y | ¥:D* - {0,1}}

CSP Instance: A list of constraints, each of the form C; = (y;,V;)

wherey; e ¥ andV; € V.
Goal: Assign variables to maximize number of satisfied ; (V;)

Ex: MAX-3-SAT OR(+) o) , OL(T =), -
D =150 W:? O(L(b,a)) ovw(=,"), -
oL &+, o (7)

CSP Algorithmic Problems Pram

ForaCSP L = (Cy, ..., C,,), define OPT (L) = max fraction of satisfiable
constraints)

(W, V)
Satisfiability: ~ Given L, are all constraints satisfiable? (OPT (L) = 1?)
E.g. decision version of SAT, 3-COL, etc.

asssgnant o V\" e Sakyhed
Val, (ass Consdmnl = L

Optimization: Given L, find an assignment that approximately maximizes
the number of satisfied constraints (= certify that OPT (L) =)

Certification: Given L, provide a “proof” that OPT(L) < B

CSP Satisfiability

Sometimes it’s easy:
2-SAT, Horn-SAT, LIN-EQ-MOD2, bipartiteness testing € P

decisim wosaa of MAX-cuxT

Sometimes it’s hard:
3-SAT, 3-COL, ... are NP-complete

Schaefer ‘78: When D = {0, 1}, every CSP is either in P or NP-complete

Dichotomy Conjecture [Fejer-Vardi '93]: Every CSP is either in P or NP-
complete

Proved (independently) by Bulatov and Zhuk in 2017

CSP Optimization & Certification

Optimization (a, 8)-approximation algorithm: Given L with OPT (L) = S, find
an assignment with value a. X < P

Exercise 10.2 gave a G,B, ﬁ)-approximation to MAX-3SAT for every 3
Goemans-Williamson is a (0.8788, §)-approximation to MAX-CUT for every f8

Certification (a, 8)-certifier: Given L with OPT (L) < a, output a proof that
OPT(L)<B. B8

Exercise 10.2 gave a G,B, ﬁ)-certifier for every S
Goemans-Williamson is also a (0.8788, 8)-certifier

1P ~—> LP

In general, an (&, f)-approximation is also an (a, §)-certifier

What are we doing?

This unit so far:
- Linear and semidefinite programming

- Using LP / SDP relaxations to approximately solve combinatorial optimization

problems
- Paradigm: ExactOPT < LPOPT

Round LP solution back to an integral solution

Where we’re going:
- What general class(es) of problems can we solve like this? CsPs

- To what extent are approximation algorithms based on LP/SDI_D?FeIaxations
automatable?

- Can we certify the non-existence of good solutions to combinatorial
optimization problems?

Linear Programming as a Proof System

Recall: Bipartite matching LP

max Z(i’,r)EE Xor
St YppXer <1 VLEL
ZfNrX&T <1 Vr € R

Xpy = 0 V({,r)eEE

—_— —a

xk,r C/ﬁﬂ.\h‘) 3P

Linear Programming as a Proof System

Recall: Bipartite matching LP
2C 1,3

max x1’3 + leg + x2’4
s.t. x;3=<1
xz’g + x2’4 <1

a3

D

x2,4 S 1 762)(-']
X13,X23,X24 =0

(B, B)-approximation algorithm: Solve the LP and produce an integral
solution, e.g., x;3 =1L, x,3=0,x4, =1

Linear Programming as a Proof System

Recall: Bipartite matching LP
2C 1,3

max Xxj3 + X2 3 + X2 4
A
s.t. x13<1 Y1=1 T o, it 12
X231t X4 =1 y2 =1
X13+x3 <1 Y3 = @
<1 =0 “o4
X24 = Ya =

X13,X23,X24 = 0

(B, B)-certifier: Find a combination of constraints that certifies an upper bound
on x;3+ X,3+ x4 a.k.a. solve the dual LP a.k.a. find a min vertex cover

Linear Programming as a Proof System

More abstractly: fode Jermuaktyg

o 0t

Goal: Prove that

VARRNEERN

max Xq3 t+Xz3 + Xp4
s.t. x;3=<1
Xp3+ X34 =<1
) X13+ %3 <1

x2,4 <1
X1,3,X2,3,X2,4 = 0

x1’3\ + x2,3 ~+ x2,4 < 2

y1 =1
y, =1
y3 =0
ys =10

Doorsahin [fofene e g

L weot combinchy of
Mavs “lwes of paof

7(“‘5 (;' , 7/1,347';);{9"

= X gd Ay nd X
<

Linear Programming as a Proof System

Indeterminates: x4, ..., X,
Axioms: {(a,x) < b
Proof lines: Linear inequalities

Inference rules: Can derive non-negative linear combinations of previous
proof lines

Goal: Prove that{{c,x) < S |

Properties:

- Soundness: Any statement proved is true

- Completeness: Any true statement can be proved (LP duality theorem)
- Automatizable: Can efficiently find a proof of any provable statement

LPs as Proof Systems for Integer Programs

Indeterminates: x4, ..., X,
Axioms: { a,x) < b that are implied by IP axioms
Proof lines: Linear inequalities

Inference rules: Can derive non-negative linear combinations of previous
proof lines

Goal: Prove that {(c,x) <

Properties:
- Soundness: Any statement proved is true

- Automatable: Can efficiently find a proof of any provable statement

Toward Completeness

|Idea: Add extra (linear) axioms and derivation rules that are consistent with
integer solutions

Cutting Planes

New derivation rule: If a is integral, then {a,x) < b - {(a,x) < |b]

A+ Wq b Y ¢ 3.8

‘“’- Z.“'?"’(x-\'fgc —7.L

-

Toward Completeness

|Idea: Add extra (linear) axioms and derivation rules that are consistent with
integer solutions

Lovasz-Schrijver and Sherali-Adams

New axioms: (True) inequalities involving low-degree polynomials of
indeterminates ’

1) Extend: Add polynomial constraints implied by integrality
2) Linearize: Replace monomials with placeholder variables to get an LP
3) Project: Round solution over placeholder variables

Example: MAX-SAT

oﬁﬂ\e%

fO) =@V 3 VI AGVE) A VI A T

L l

max 2z, +2z, +2z3 + 2, o MmO

s.t. x4, +(1—2x3) 227 \
X1+ X3 22, 3

x + (1—x,) > z3 BT

(1—x1) =24 b

Xzt~ Oc x| E ¢

Level 2 Sherali-Adams
fOx) =1V x,VX3) A(xg Vxz) A(xg V) A Xy

- Extend via new degree-2 constraints:
max x4+ Xg + Xg + X7 g

S.L X1 +xz + (1 _ XS) = X4 xX1x, = 0, ...
X1+ X3 = X5) x1(1—2x3) =20,..
(1 — xl)(l — xz) >0, ...

(1 — xl) = X7 \{Xl(xl + X, + (1 — X3)) > X1X1, o
0<x;<1 J (1 —x) (% +x2 + (1 —x3)) = (1 — x1)xq, ..

Level 2 Sherali-Adams

fOx) =1V x,VX3) A(xg Vxz) A(xg V) A Xy

max x, + Xs + Xg + %5 Linearize by replacing x;x; with yg; 1, x; with yg:
s.t. xy+xy + (1 —x3) = x4 xw__//zd e
(1—x)(A—x3) =20,... 20
X1 + (1 _ xZ) = X6 — —~— > |- 92,3’ ‘{)iz‘s{' \.jf_u\i;
(1 — xl) 2 X7 -xl(xl + X9 + (1 — X3)) = X1X1, o

0<x;<1 (1—x) (3 + 25+ (1 —x3)) = (1 — x1)xq,

Level d Sherali-Adams NN 34/(

Given: K = {{a{,x) =0, ...,{(a,,, x) = 0}

1. Extend: Include every constraint of the form
(ai, x) - HjeS Xj [Tker(1 _Jx’i)AZ 0

dQ qve@ < A

2. Linearize:
C .
a. Replace every appearance of x;” with x;

b. Replace every appearance of HyES xj with yg
)

The resulting relaxation is called SA,(K)

=

ce—

Facts about Sherali-Adams

* Each SA, is a tightening of SA;_4 : It preserves all integral solutions, while

removing some fractional ones L
> Sound p»)(S y4lem

* SA, .1 recovers the original integral feasible set

L'7 SAN\ N ow'tie

* Each SA, involves roughly m - n? constraints and can be optimized over in
poly(m - n%) time.

What’s it good for?

* Cangeta

* For a given size LP relaxation, Sherali-Adams is essentially optimal [Chan-
Lee-Raghavendra-Steurer13]

