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Lecture Notes 25:

Pseudoexpectations, Sum-of-Squares

Reading.

• Fleming, Kothari, and Pitassi, “Semialgebraic Proofs and Efficient Algorithm Design”

Last time, we introduced the Sherali-Adams hierarchy of LP relaxations. Given an integer linear pro-
gram of the form

max ⟨c⃗, x⃗⟩
s.t. ⟨⃗a1, x⃗⟩ ≥ 0

...

⟨⃗am, x⃗⟩ ≥ 0

xi ∈ {0, 1} ∀i ∈ [n]

we construct an LP on
(
n
≤d

)
variables and O(m ·

(
n
≤d

)
) constraints via the process:

Extend: Include every constraint of the form
∏

i∈S xi
∏

j∈T (1−xi) ≥ 0 or ⟨⃗ai, x⃗⟩
∏

i∈S xi
∏

j∈T (1−xi) ≥
0 where the LHS has degree at most d.

Linearize: Multilinearize each constraint by replacing each occurrence of xci with xi, and then each occur-
rence of

∏
i∈S xi with a new variable yS .

We motivated SA(d) as a proof system that can be used to certify an upper bound on the objective of
the original LP. That is, if our SA(d) relaxation takes the form

max
n∑

i=1

ciy{i}

s.t. p1(y⃗) ≥ 0

...

pN (y⃗) ≥ 0,

then if we can express the objective function as β−
∑n

i=1 ciy{i} = λ1p1(y⃗)+ · · ·+λNpN (y⃗), we can certify
an upper bound of OPT ≤ SA-OPT ≤ β for the original combinatorial optimization problem.

1



1 Pseudoexpectations

The LP dual interpretation of the SA relaxation gives rise to the certification interpretation above. But the
primal LP itself has a natural interpretation in terms of approximation algorithms as well. Let (αS)|S|≤d

be a feasible solution to SA(d) Then for each monomial
∏

i∈S xi over the original variables, define the
pseudoexpectation operator associated to this solution by

Ẽ

[∏
i∈S

xi

]
:= αS .

We can also extend the pseudoexpectation operator to arbitrary polynomials by linearity:

Ẽ

 ∑
|S|≤d

cS
∏
i∈S

xi

 :=
∑
|S|≤d

αS .

Then the SA(d) relaxation can be equivalently stated as

max Ẽ[⟨c⃗, x⃗⟩]

s.t. Ẽ[pi(x⃗)] ≥ 0 ∀i = 1, . . . , N.

where the maximum is taken over all possible pseudoexpectation operators Ẽ, or equivalently, over the
variables Ẽ[

∏
i∈S xi] for all |S| ≤ d.

A pseudoexpectation is a linear functional that behaves like an expectation on polynomials of degree at
most d. The way to think about a solution to this LP is as a pseudodistribution over solutions to the original
ILP. Here, a pseudodistribution is an object that behaves like a distribution as far as polynomials of degree
at most d are concerned. To see what I mean:

• Let v1, . . . , vn ∈ {0, 1} be a feasible solution to the original ILP. Then setting Ẽ[p(x⃗)] = p(v⃗) for
every degree-d polynomial p gives a solution to this relaxed LP with objective value ⟨c⃗, v⃗⟩. This sanity
checks our assertion that the SA relaxation is actually a relaxation.

• Let D be a distribution over feasible solutions v⃗ ∈ {0, 1}n to the ILP. Then if we set Ẽ[p(x⃗)] =
Ev⃗∼D[p(v⃗)], then we get a solution with objective value Ev⃗∼D[⟨c⃗, v⃗⟩].

• A degree-d pseudodistribution is a collection (DS)|S|≤d of distributions DS over assignments to the
variables in S such that for all T ⊆ S with |S| ≤ d, the marginal distribution of DS over variables
in T is equal to DT . Setting Ẽ[

∏
i∈S xi] = Ev⃗∼DS

[
∏

i∈S vi] also gives a feasible solution to the SA
relaxation. One can show that expectations over degree-d pseudodistributions exactly characterize
degree-d pseudoexpectations.

2 Sum-of-Squares (Lasserre) Hierarchy

Just as Sherali-Adams is a hierarchy of progressively tighter LP relaxations for combinatorial optimization
problems, we can define an analogous hierarchy of SDP relaxations. Recall that the idea behind Sherali-
Adams was to augment our constraints by using the fact that non-negative juntas

∏
i∈S xi

∏
j∈T (1− xj) of
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degree at most d are non-negative over {0, 1}. Sum-of-squares takes this a step farther by adding a constraint
for all degree-d polynomials p(x⃗) that can be expressed as the square of a polynomial. To see why this is at
least as powerful as Sherali-Adams, we observe the fact that:

Fact 1. A multilinear polynomial p : {0, 1}d → R is non-negative iff p = q2 for a multilinear polynomial
q : {0, 1}d → R.

Proof. Let q be the (unique) multilinear polynomial such that q(x) =
√

p(x) for every x ∈ {0, 1}d.

Thus, an equivalent way to view SA(d) is as including all constraints of the form (q(x))2 ≥ 0 where q
is a polynomial depending on at most d variables. Meanwhile, SOS(2d) includes all constraints of the form
(q(x))2 where q is any polynomial of degree at most d.

Goemans-Williamson Re-revisited. Recall our formulation of the Max-Cut problem as a quadratic inte-
ger program.

max
∑

(i,j)∈E

1

2
− 1

2
xixj

s.t. x2i = 1 ∀i ∈ [n].

To get the SOS(2) relaxation of this program, we first extend the constraints to enforce (q(x⃗))2 ≥ 0 for
every linear polynomial q. Since a linear polynomial can be written as ⟨⃗a, x⃗⟩1, we get that this is equivalent
to:

0 ≤ ⟨⃗a, x⃗⟩2 = ⟨⃗a, x⃗x⃗T a⃗⟩

for every a⃗, or in other words, x⃗x⃗T is PSD.
Next, we multilinearize and then linearize by replacing each occurrence of xixj with y{i,j}. This gives

us

max
∑

(i,j)∈E

1

2
− 1

2
y{i,j}

s.t. y{i} = 1 ∀i ∈ [n]

Y = (y{i,j}) ⪰ 0.

This is exactly the SDP relaxation we saw before.
Another classic application was given by Arora, Rao, and Vazirani, who showed that degree-4 SOS can

be used to estimate the conductance of a graph. This is sometimes called the “sparsest cut” problem and
is known to be NP-hard. Recall Cheeger’s inequality, which says ν2/2 ≤ ϕ(G) ≤

√
2ν2(G). It implies

that by computing the second eigenvalue of the normalized Laplacian, one gets an (O(
√
β), β)-certification

algorithm for the sparsest cut, i.e., if ϕ(G) ≤ β one can certify that ϕ(G) ≤ O(
√
β). It turns out that more

is true; one can interpret the proof of Cheeger’s inequality as a degree-2 SOS certificate, as well as recover
a cut with value at most O(

√
β).

Improving on an (O(log n)β, β)-approximation algorithm of Leighton and Rao, the ARV result gave an
(O(

√
log n)β, β)-approximation algorithm.

1Lying a bit, since these are only linear homogeneous polynomials. Those with constant terms turn out not to add anything.

3



Other SOS Facts The degree-2d SOS relaxation gives rise to an SDP over nO(d) variables with (most of
the time) can be solved in time nO(d). The interpretation of Sherali-Adams in terms of pseudoexpectations
and pseudodistributions also holds.
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