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Pseudoexpectations, Sum-of-Squares

Reading.
* Fleming, Kothari, and Pitassi, “Semialgebraic Proofs and Efficient Algorithm Design”

Last time, we introduced the Sherali-Adams hierarchy of LP relaxations. Given an integer linear pro-
gram of the form

(@, ) >0
x; € {0,1} Vi € [n]

we construct an LP on ( 2 d) variables and O(m - ( 2 d)) constraints via the process:

Extend: Include every constraint of the form [ [, g @i [ [ ;e (1—2;) > 00r (@, &) [ [;e g @i [ [jer(1—2:) >
0 where the LHS has degree at most d.

Linearize: Multilinearize each constraint by replacing each occurrence of x§ with x;, and then each occur-
rence of Hie 5 T; with a new variable yg.

We motivated SA(d) as a proof system that can be used to certify an upper bound on the objective of
the original LP. That is, if our S A(d) relaxation takes the form

n

max Z CiY{i}

i=1
st. pi(§) =20

then if we can express the objective function as 5 —3 i | ciyry = Aip1(9) +- - -+ Anpy (¥), we can certify
an upper bound of OPT < SA-OPT < g for the original combinatorial optimization problem.



1 Pseudoexpectations

The LP dual interpretation of the SA relaxation gives rise to the certification interpretation above. But the
primal LP itself has a natural interpretation in terms of approximation algorithms as well. Let (cvs)|s<4
be a feasible solution to SA(d) Then for each monomial [[; g z; over the original variables, define the
pseudoexpectation operator associated to this solution by

B [H x] s

€S

We can also extend the pseudoexpectation operator to arbitrary polynomials by linearity:

S es[[wi] = 3 as.

IS|<d  i€S |S|<d

Then the S A(d) relaxation can be equivalently stated as

max  E[(¢, &)]
st. Epi(@)]>0 Vi=1,...,N.

Hl

where the maximum is taken over all possible pseudoexpectation operators E, or equivalently, over the
variables E[[ [;c g =] for all |S| < d.

A pseudoexpectation is a linear functional that behaves like an expectation on polynomials of degree at
most d. The way to think about a solution to this LP is as a pseudodistribution over solutions to the original
ILP. Here, a pseudodistribution is an object that behaves like a distribution as far as polynomials of degree
at most d are concerned. To see what I mean:

e Let v1,...,v, € {0,1} be a feasible solution to the original ILP. Then setting E[p(Z)] = p(¥) for
every degree-d polynomial p gives a solution to this relaxed LP with objective value (¢, ¥'). This sanity
checks our assertion that the SA relaxation is actually a relaxation.

* Let D be a distribution over feasible solutions ¥ € {0,1}" to the ILP. Then if we set IE[p(a‘:’)] =
Ezp[p(¥)], then we get a solution with objective value Eg.p[(¢, U)].

* A degree-d pseudodistribution is a collection (Dg)g|<q4 of distributions Dg over assignments to the
variables in S such that for all 7" C S with |S| < d, the marginal distribution of Dg over variables
in T is equal to Dr. Setting E[Hies 7i] = Egpg|[ L;cg vil also gives a feasible solution to the SA
relaxation. One can show that expectations over degree-d pseudodistributions exactly characterize
degree-d pseudoexpectations.

2 Sum-of-Squares (Lasserre) Hierarchy

Just as Sherali-Adams is a hierarchy of progressively tighter LP relaxations for combinatorial optimization
problems, we can define an analogous hierarchy of SDP relaxations. Recall that the idea behind Sherali-
Adams was to augment our constraints by using the fact that non-negative juntas [ [, ¢ z; [ j er(1—x;) of
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degree at most d are non-negative over {0, 1}. Sum-of-squares takes this a step farther by adding a constraint
for all degree-d polynomials p(&) that can be expressed as the square of a polynomial. To see why this is at
least as powerful as Sherali-Adams, we observe the fact that:

Fact 1. A multilinear polynomial p : {0,1}% — R is non-negative iff p = q* for a multilinear polynomial
q:{0,1}4 - R

Proof. Let g be the (unique) multilinear polynomial such that ¢(z) = +/p(x) for every = € {0,1}%. O

Thus, an equivalent way to view SA(d) is as including all constraints of the form (g(z))? > 0 where ¢
is a polynomial depending on at most d variables. Meanwhile, SO.S(2d) includes all constraints of the form
(q(x))? where ¢ is any polynomial of degree at most d.

Goemans-Williamson Re-revisited. Recall our formulation of the Max-Cut problem as a quadratic inte-
ger program.

1 1
max Z 5 — §$1$]
(i.j)eE

st.az? =1 Vie|n.

To get the SOS(2) relaxation of this program, we first extend the constraints to enforce (g(&))? > 0 for
every linear polynomial q. Since a linear polynomial can be written as (@, ¥)!, we get that this is equivalent
to:

for every @, or in other words, £z is PSD.
Next, we multilinearize and then linearize by replacing each occurrence of z;x; with y; ;1. This gives
us

1 1
max Z 5 — §y{l7j}
(i,9)EF
S.L Yy = 1 Vi € [TL]
Y = (yg, ) = 0.

This is exactly the SDP relaxation we saw before.

Another classic application was given by Arora, Rao, and Vazirani, who showed that degree-4 SOS can
be used to estimate the conductance of a graph. This is sometimes called the “sparsest cut” problem and
is known to be NP-hard. Recall Cheeger’s inequality, which says 12/2 < ¢(G) < /2v2(G). It implies
that by computing the second eigenvalue of the normalized Laplacian, one gets an (O(+/f3), 3)-certification
algorithm for the sparsest cut, i.e., if (G) < /3 one can certify that ¢(G) < O(+/3). It turns out that more
is true; one can interpret the proof of Cheeger’s inequality as a degree-2 SOS certificate, as well as recover
a cut with value at most O(+1/}3).

Improving on an (O(logn)f, 3)-approximation algorithm of Leighton and Rao, the ARV result gave an

(O(v/logn) B, B)-approximation algorithm.

'Lying a bit, since these are only linear homogeneous polynomials. Those with constant terms turn out not to add anything.




Other SOS Facts The degree-2d SOS relaxation gives rise to an SDP over n©(@) variables with (most of
the time) can be solved in time n°(4. The interpretation of Sherali-Adams in terms of pseudoexpectations
and pseudodistributions also holds.



