
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 4:

Spectral Concentration and Learning

Reading.

• O’Donnell, Analysis of Boolean Functions §3.1-3.2, 3.4

1 Spectral Concentration

Today we’ll study another measure of the simplicity (or complexity) of Boolean functions based on whether
they are approximated by low-degree polynomials.

Definition 1. The degree of a function f : {−1, 1}n → R is the degree of its Fourier expansion as a
multilinear polynomial, i.e., deg(f) = max{|S| | f̂(S) ̸= 0}.

Example 2.

1. The constant functions ±1 have degree 0.

2. A dictator χi has degree 1.

3. A k-junta is a Boolean function f(x1, . . . , xn) that depends only on some subset I ⊆ [n] of variables
with |I| = k. A k-junta has degree k.

4. In general, a low-degree function might still depend on all of its variables, e.g., f(x) = x1+ · · ·+xn.
The general form of a degree-d function is

f(x) =
∑
|S|≤d

csχS(x).

5. A decision tree T over variables x1, . . . , xn is a binary tree where each internal node is labeled by a
variable and each leaf and all internal edges are labeled by ±1. It computes by traversing the root-to-
leaf path consistent with the input and outputs the label of the leaf reached.

If f is computed by a depth-d decision tree, then deg(f) ≤ d. To see this, for each leaf ℓ of the tree
let bℓ be the label of that leaf. Let consℓ(x) be the indicator function for whether the tree ends up at
leaf ℓ on input x. Each function consℓ is a d-junta, since consistency with the path to ℓ can be checked
by inspecting at most d variables. Thus, f(x) =

∑
leaves ℓ bℓ · consℓ(x) is a linear combination of

d-juntas, hence a degree-d polynomial.
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Low-degree functions are nice because they have compressed representations. A general Boolean func-
tion f requires 2n parameters to specify. But if you know f has degree d, you only need to specify(

n

≤ d

)
:=

d∑
k=0

(
n

k

)
≤ O(nd)

n-bit numbers for its Fourier coefficients. This is useful in learning applications, since to learn an unknown
low-degree polynomial, you just need to learn a relatively small number of coefficients.

Unfortunately, many simple functions are not literally low degree. For example,

ANDn(x) = (1− 2−n) +
∑
S ̸=∅

2−n+1(−1)|S|+1χS(x)

has degree n, but with respect to the uniform distribution, it is basically the constant all-false function 1. This
is related to the fact that the sum of the squared Fourier coefficients of ANDn above level 0 is exponentially
small.

You had an exercise where you explored the connection between approximability by degree-d polyno-
mials and low Fourier weight above level k. To spell this out a bit more, we make a few definitions.

Definition 3. For functions f, g : {−1, 1}n → R, define their squared ℓ2 distance by

∥f − g∥22 = E
x∼{−1,1}n

[
(f(x)− g(x))2

]
= ⟨f − g, f − g⟩.

For ε > 0, a function g is said to ε-approximate f in squared ℓ2 distance if ∥f − g∥22 ≤ ε.

Definition 4. The Fourier weight of a function f at level d is

W
d[f ] =

∑
|S|=d

f̂(S)2.

The Fourier weight of a function f above level d is

W
>d[f ] =

∑
|S|>d

f̂(S)2.

The following theorem tightly connects low-degree approximation to concentration of the Fourier spec-
trum.

Theorem 5. A real function f : {−1, 1}n → R is ε-approximated in squared ℓ2 distance by a degree-d
polynomial p if and only if W>d[f ] ≤ ε.

Proof. Let p(x) =
∑

|S|≤d p̂(S)χS(x) be an arbitrary degree-d polynomial. By Parseval,

∥f − p∥22 =
∑
S⊆[n]

(f̂(S)− p̂(S))2 =
∑
S≤d

(f̂(S)− p̂(S))2 +
∑
S>d

f̂(S)2.

This is uniquely minimized by taking p̂(S) = f̂(S) for all |S| ≤ d, i.e., by setting p(x) = f≤d(x) to be the
part of f at or below level d. The error of this minimizer is exactly W>d[f ].
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This proof has a nice linear algebraic interpretation. Recall that the parity functions form an orthonormal
basis for the vector space of all real-valued functions f : {−1, 1}n → R. The parities of width at most k
span a subspace. The best ℓ2 approximation p of degree k to a function f is its projection onto this subspace,
which is obtained by throwing away the component in the orthogonal subspace. [Draw a picture.]

This connection motivates the following definition of spectral concentration.

Definition 6. A function f is ε-concentrated on degree up to d if

W
>d[f ] ≤ ε.

2 Bounding Fourier Weight

One can of course estimate the Fourier weights of a given function f using its Fourier spectrum. This can
be painful in cases where we don’t have a grip on the specific Fourier coefficients. It turns out that we can
exploit some simple relationships between spectral concentration, influence, and noise stability to estimate
Fourier weights more combinatorially.

Proposition 7. Any function f : {−1, 1}n → R is ε-concentrated on degree up to I[f ]/ε.

Proof. By Markov’s inequality,

W
>d[f ] = Pr

S∼Sf

[|S| > d] ≤ 1

d
· E
S∼Sd

[|S|] = I[f ]

d
.

To make this at most ε, it suffices to take d = I[f ]/ε.

Example 8. For any monotone function f , we have I[f ] = O(
√
n). So monotone functions are ε-

concentrated on degree up to O(
√
n/ε). In particular, this is true for MAJn, but it turns out we can do

better.

Next, we’ll show that functions which are noise stable are also spectrally concentrated. It’ll be more
convenient to state the result in terms of noise sensitivity, which measures how much a function is likely
to change under small random perturbations. (As opposed to noise stability, which measures how much
a function is likely to stay the same on well-correlated inputs.) It’s like how in some situations, it’s more
useful to work with distances, while in others with correlations, even though they capture the same concept.

Definition 9. Let δ ∈ [0, 1]. Consider the distribution on pairs (x, y) where x is uniformly random and for
each i independently,

yi =

{
xi with probability 1− δ

−xi with probability δ.

The noise sensitivity of a function f : {−1, 1}n → {−1, 1} at δ is

NSδ[f ] = Pr
(x,y)

[f(x) ̸= f(y)] =
1

2
− 1

2
Stab1−2δ[f ].

Proposition 10. Any function f is ε-concentrated on degree up to 1/δ for ε = 3NSδ[f ].
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Proof. Using the Fourier formula for noise stability,

2NSδ[f ] = 1− Stab1−2δ[f ]

= E
S∼Sf

[
1− (1− 2δ)|S|

]
≥ (1− (1− 2δ)d) Pr

S∼Sf

[1− (1− 2δ)|S| > (1− (1− 2δ)d)]

= (1− (1− 2δ)d) Pr
S∼Sf

[|S| > d].

The first inequality is Markov and the last equality follows from the fact that (1− (1−2δ))x is an increasing
function in x.

Taking d = 1/δ and using the fact that (1− x)1/x ≤ 1/e, we get

Pr
S∼Sf

[|S| > 1/δ] ≤ 2NSδ[f ]

1− (1− 2δ)1/δ
≤ 2NSδ[f ]

1− e−2
≤ 3NSδ[f ].

Example 11. For every ρ, n,

Stabρ[MAJn] ≥
2

π
arcsin ρ.

This implies that

NSδ[MAJn] ≤
1

π
arccos(1− 2δ) =

2

π

√
δ +O(δ3/2)

via the Taylor approximation to cos. Hence NSδ[MAJn] = O(
√
δ). So in fact, MAJn is ε-concentrated up

to degree O(1/ε2).

3 Learning under the Uniform Distribution

A classic use of low-degree approximations is to the problem of binary classification. Here is the setting.
You are given a sample Z = ((x1, f(x1)), . . . , (xm, f(xm))) where x1, . . . , xm ∈ {−1, 1}n are uniform
and independent, and f is an unknown function. However, you are promised that f ∈ C for some concept
class C ⊆ {f : {−1, 1}n → {−1, 1}}. Think of C as being “low-depth decision trees” or “small Boolean
circuits.”

Using these random samples, your goal is to learn an approximation to the unknown function f . Specif-
ically, your job is to identify a hypothesis h : {−1, 1}n → {−1, 1} such that dist(f, h) ≤ ε. We say that C
is (ε, δ)-learnable under the uniform distribution if there exists a learning algorithm such that for all f ∈ C,

Pr
Z
[dist(f, h) ≤ ε] ≥ 1− δ.

Theorem 12. Let C be any concept class such that every f ∈ C is ε-concentrated up to degree d. Then C is
(2ε, δ)-learnable under the uniform distribution in time poly(nd, 1/ε, log(1/δ)).

Example 13. Here are some applications of spectral concentration bounds to learning:

1. Depth-d decision trees are learnable in time nO(d).
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2. Monotone functions are learnable in time nO(
√
n).

3. Any {∧,∨,¬} circuit of size s and depth k is ε-concentrated up to degree O(logk−1(s) log(1/ε)).
(This is Tal’s tightening of LMN’s famous result re: learning AC0 in quasipolynomial time.) Hence,
size-s depth-k circuits are learnable in time nO(logk−1(s) log(1/ε)).

As alluded to before, the idea will be to learn all of the low-degree Fourier coefficients of f . This is
enabled by the following subroutine that allows us to estimate a single Fourier coefficient using random
samples labeled by f .

Lemma 14. There exists a randomized algorithm Est that, given a set S ⊆ [n] and random examples
of the form (x, f(x)), outputs cS such that |cS − f̂(S)| ≤ ε with probability at least 1 − δ in time
poly(n, 1/ε, log(1/δ)).

Proof sketch. Recall that f̂(S) = Ex [f(x)χS(x)]. A Chernoff bound shows that setting cS to be the em-
pirical average of m = O(log(1/δ)/ε2) random evaluations of f(xi)χS(x

i) gives an ε-approximation with
probability 1− δ. I’ll ask you to work out the details in an exercise.

We are now ready to state Linial, Mansour, and Nisan’s learning algorithm for spectrally concentrated
classes.

LMN “Low Degree” Algorithm Given uniform random samples labeled by a function f : {−1, 1}n →
{−1, 1}:

1. For every set S ⊆ [n] of size at most d, use subroutine Est(S) to compute an estimate cS of f̂(S) to
accuracy ε′ =

√
ε/2nd and failure probability δ′ = δ/2nd.

2. Output h(x) := sgn
(∑

|S|≤d cSχS(x)
)

Proof of Theorem 12. By a union bound, with probability at least 1− δ we have |cs − f̂(S)| ≤ ε′ for every
S. Assuming this is the case, and using the fact that h(x) ̸= f(x) =⇒ (p(x)− f(x))2 ≥ 1,

dist(h, f) ≤ E
x∼{−1,1}n

[
(p(x)− f(x))2

]
=

∑
|S|≤d

(cs − f̂(S))2 +
∑
|S|>d

f̂(S)2

≤
(
n

d

)
(ε′)2 + ε ≤ 2ε.
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