
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 6:

Intro to Hypercontractivity

Reading.

• O’Donnell, Analysis of Boolean Functions §9.1-9.5

Here are some examples of random variables. Discussion question: Which ones would you say are
“nice” to work with? Which ones are not so nice? Why?

1. x ∼ {−1, 1}

2. u ∼ U [0, 1]

3. t an r.v. with probability density ∝ 1
1+z2

4. g ∼ N (0, 1)

5. y =

{
1 w.p. 2−n

0 w.p. 1− 2−n

Definition 1. For a parameter B ≥ 1, we say that a random variable X is B-reasonable if E[X4] ≤
BE[X2]2. (Equivalently, if ∥X∥4 ≤ B1/4∥X∥2.)

In statistics, the parameter B is an upper bound on the “kurtosis” of X , which is a measure of how heavy
its tails are.

For the examples above, x is 1-reasonable, u is (9/5)-reasonable, t is not reasonable for any value of B,
g is 3-reasonable, and y is 2n-reasonable.

Why should we like reasonable random variables? First off, they have small tails:

Proposition 2. Let nonzero X be B-reasonable. Then

Pr[|X| ≥ t · ∥X∥2] ≤ B/t4.

This should be compared with Chebyshev’s inequality, which gives the weaker bound Pr[|X| ≥ t ·
∥X∥2] ≤ 1/t2.

Proof. This follow from Markov’s inequality on the fourth moment:

Pr[|X| ≥ t · ∥X∥2] = Pr[X4 ≥ t4∥X∥42]

≤ E[X4]

t4E[X2]2

≤ B

t4
.
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On the other hand, reasonable random variables are also anti-concentrated, meaning they don’t put “too
much” of their probability mass around 0. Our tool for deriving this is the Paley-Zygmund inequality, which
you can think of as a reverse Chebyshev inequality.

Proposition 3 (Paley-Zygmund). Let Z ≥ 0 be a random variable and let t ∈ [0, 1]. Then

Pr[Z > tE[Z]] ≥ (1− t)2
E[Z]2

E[Z2]
.

Proof. By linearity, we can write

E[Z] = E[Z · 1{Z≤tE[Z]}] + E[Z · 1{Z>tE[Z]}].

By construction, the first term is at most tE[Z]. Meanwhile, by Cauchy-Schwarz, we can bound the second
by

E[Z · 1{Z>tE[Z]}] ≤
√

E[Z2] · E[12{Z>tE[Z]}] =
√
E[Z2] ·

√
Pr[Z ≥ tE[Z]].

Rearranging gives the stated inequality.

We can now obtain an anti-concentration result for reasonable random variables.

Proposition 4. Let nonzero X be B-reasonable. Then for all t ∈ [0, 1],

Pr[|X| > t · ∥X∥2] ≥
(1− t2)2

B
.

Proof.

Pr[|X| > t · ∥X∥2] = Pr[X2 > t2 · E[X2]]

≥ (1− t2)2
E[X2]2

E[X4]

≥ (1− t2)2

B
.

1 Bonami’s Lemma

Bonami’s Lemma says that if f is a low-degree polynomial, then f(x) for x ∼ {−1, 1}n is reasonable.

Lemma 5 (Bonami’s Lemma). Let f : {−1, 1}n → R have degree at most k. Then f(x) for x ∼ {−1, 1}n
is 9k-reasonable, i.e., E[f4] ≤ 9kE[f2]2.

Before proving the lemma, here’s a reminder of some useful technical tools. Recall the derivative
operator

(Dif)(x) =
f(x(i→1))− f(x(i→−1))

2
.

The derivative has a counterpart, the “expectation” operator, which captures the average value of f at x in
the direction of i.

(Eif)(x) =
f(x(i→1)) + f(x(i→−1))

2
.
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Observe that for any function f : {−1, 1}n → R, we have

f(x) = xn(Dnf)(x) + (Enf)(x).

The utility of this expression is that the functions Dnf and Enf depend only on the variables x1, . . . , xn−1.
In particular, for uniform x, the random variables Dnf(x) and Enf(x) are independent of xn. So this
decomposition facilitates proofs by induction on the number of variables n.

Proof. We prove the claim by induction on n.

Base case: If n = 0, then f is constant and the statement is true.

Inductive case: Assume the statement is true for n−1 variables. Write f(x) = xn(Dnf)(x)+(Enf)(x).
Define the random variables f = f(x), d = (Dnf)(x), e = (Enf)(x) for x ∼ {−1, 1}n. Then

E[f4] = E[(xn · d+ e)4]

= E[x4nd4] + 4E[x3nd3e] + 6E[x2nd2e2] + 4E[xnde3] + E[e4]
= E[x4n]E[d4] + 4E[x3n]E[d3e] + 6E[x2n]E[d2e2] + 4E[xn]E[de3] + E[e4]
= E[d4] + 6E[d2e2] + E[e4].

The second-to-last inequality uses the fact that xn is independent of d and e. The final equality uses the fact
that E[x4n] = E[x2n] = 1 and E[x3n] = E[xn] = 0.

Similarly,

E[f2] = E[(xn · d+ e)2] = E[x2n]E[d2] + 2E[xn]E[de] + E[e2] = E[d2] + E[e2].

To bound E[f4] in terms of E[f2], we analyze the summands on the left. Recall that if f is a degree-k
polynomial, then its derivative d is a degree k − 1 polynomial. So by the inductive hypothesis

E[d4] ≤ 9k−1E[d2]2.

We don’t get a reduction in degree for the expectation term, but the inductive hypothesis still tells us that
E[e4] ≤ 9kE[e2]2. For the middle term, we apply Cauchy-Schwarz and the inductive hypothesis again to get

E[d2e2] ≤
√

E[d4]E[e4] ≤
√
9k−1E[d2]2 · 9kE[e2]2 = 1

3
· 9kE[d2]E[e2].

Putting everything together,

E[f4] ≤ 9k−1E[d2]2 + 2 · 9kE[d2]E[e2] + 9kE[e2]2

≤ 9k(E[d2] + E[e2])2

= 9kE[f2]2.
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2 An Application: The FKN Theorem

Theorem 6 (Friedgut-Kalai-Naor). Suppose f : {−1, 1}n → {−1, 1} has W1[f ] = 1− δ. Then f is O(δ)
close to ±χi for some i ∈ [n].

Proof. Let g = f=1 be the degree-1 part of f . By Parseval, E[g2] = W1[f ] = 1− δ. Applying last week’s
exercise to g,

1

2
Var

[
g2
]
=
∑
i ̸=j

ĝ(i)2ĝ(j)2

=

(
n∑

i=1

ĝ(i)2

)2

−
n∑

i=1

ĝ(i)4

= (1− δ)2 −
n∑

i=1

f̂(i)4

≥ (1− 2δ)−
n∑

i=1

f̂(i)4.

Rearranging, we get

(1− 2δ)− 1

2
Var

[
g2
]
≤

n∑
i=1

f̂(i)4

≤ max
i

{f̂(i)2}
n∑

i=1

f̂(i)2

≤ max
i

{f̂(i)2}

≤ max
i

{|f̂(i)|}.

Noting that f̂(i) is the correlation of f with χi, to prove the theorem, it suffices to show that Var
[
g2
]
=

O(δ).
By Bonami’s Lemma, the degree-2 polynomial g2 is 81-reasonable. So by anticoncentration Proposi-

tion 4, setting X = g2 − E[g2] = g2 − (1− δ) and t = 1/2, we get

Pr

[
|g2 − (1− δ)| ≥ 1

2

√
Var [g2]

]
≥ (3/4)2

81
=

1

144
.

By the triangle inequality,

Pr

[
|g2 − 1| ≥ 1

2

√
Var [g2]− δ

]
≥ 1

144
.

Intuitively, this says that if Var
[
g2
]

is large, then g2 (and hence g) deviates from 1 with large probability.
But since |f | = 1 always, this means we must have that g deviates from f with large probability. But this
can’t happen, because E[(f − g)2] = δ is small, so we must conclude that Var

[
g2
]

is small.
More precisely, one can show that if Var

[
g2
]
> 6400δ, then |g2 − 1| > 39

√
δ =⇒ (f − g)2 ≥ 169δ.

So
Pr[|g2 − 1| > 39

√
δ] ≥ 1

144
=⇒ E[(f − g)2] ≥ 1

144
· 169δ > δ,
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a contradiction.

3 Hypercontractivity

Let f : {−1, 1}n → R, and let f=k be its degree-k part. The noise operator has a very clean effect on the
homogeneous polynomial f=k:

Tρf
=k =

∑
|S|=k

ρ|S|f̂(S) = ρkf=k.

Setting ρ = 1/
√
3 and applying Bonami’s Lemma,

∥T1/
√
3f

=k∥4 =
1

√
3
k
∥f=k∥4

= ∥f=k∥2.

It turns out that we can relax the condition that f is a homogeneous polynomial:

Theorem 7 ((4, 2)-Hypercontractivity Theorem). For every f : {−1, 1}n → R,

∥T1/
√
3f∥4 ≤ ∥f∥2.

One can conclude this from the calculation above, plus a few nice analytic tricks. Another way to prove
it is by just repeating the induction underlying Bonami’s Lemma.

One can also conclude Bonami’s Lemma from the hypercontractivity theorem. Extending the definition
of the noise operator to ρ > 1 via Tρf =

∑
ρ|S|f̂(S)χS , we have for all f of degree k that

∥f∥4 = ∥T1/
√
3T

√
3f∥4 ≤ ∥T√

3f∥2 ≤
√
3
k∥f∥2.

Raising both sides to the 4th power gives Bonami’s Lemma.
So the hypercontractivity theorem is basically just a reformulation of Bonami’s Lemma, but it says

something different. It quantifies the extent to which Tρ is a “smoothing” operator, i.e., one which mollifies
peaks in the distribution of f(x). You saw in the exercises that Tρ is a contractive map: ∥Tρf∥2 ≤ ∥f∥2, for
instance. The hypercontractivity theorem says that Tρ is actually a hypercontractive map, in that it smooths
out f even when one measures Tρf in a higher norm.

With some more machinery (see Section 10.1 of O’Donnell) one can prove the general hypercontractiv-
ity theorem.

Theorem 8 (Hypercontractivity Theorem). Let f : {−1, 1}n → R and 1 ≤ p ≤ q ≤ ∞. Then ∥Tρf∥q ≤
∥f∥p for 0 ≤ ρ ≤

√
p−1
q−1 .

We won’t prove this, but there is a nice trick to getting another special case “for free” as a consequence
of the (4, 2)-hypercontractivity theorem. It relies on the observation that the noise operator is self-adjoint:

Claim 9. For ρ ∈ R and f, g : {−1, 1}n → R, we have ⟨Tρf, g⟩ =
∑

ρ|S|f̂(S)ĝ(S) = ⟨f, Tρg⟩.

5



Corollary 10. For all f : {−1, 1}n → R,

∥T1/
√
3f∥2 ≤ ∥f∥4/3.

Proof. Writing T = T1/
√
3, we have

∥Tf∥22 = ⟨Tf, Tf⟩
= ⟨f, TTf⟩
≤ ∥f∥4/3∥TTf∥4 by Hölder’s inequality

≤ ∥f∥4/3∥Tf∥2 by (2, 4)-hypercontractivity.

Dividing both sides by ∥Tf∥2 gives the claim.
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