
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 7:

Hypercontractivity Continued

Reading.

• O’Donnell, Analysis of Boolean Functions §9.2, 9.5, 9.6

Last time we discussed Bonami’s Lemma, which says that low degree functions induce reasonable ran-
dom variables on the hypercube.

Lemma 1 (Bonami’s Lemma). If f : {−1, 1}n → R has degree k, then

E[f(x)]4 ≤ 9kE[f(x)2]2.

1 Hypercontractivity

Let f : {−1, 1}n → R, and let f=k be its degree-k part. The noise operator has a very clean effect on the
homogeneous polynomial f=k:

Tρf
=k(x) =

∑
|S|=k

ρ|S|f̂(S)χS(x) = ρkf=k(x).

Setting ρ = 1/
√
3 and applying Bonami’s Lemma,

∥T1/
√
3f

=k∥4 =
1

√
3
k
∥f=k∥4

≤ ∥f=k∥2.

It turns out that we can relax the condition that f is a homogeneous polynomial:

Theorem 2 ((2, 4)-Hypercontractivity Theorem). For every f : {−1, 1}n → R,

∥T1/
√
3f∥4 ≤ ∥f∥2.

One can conclude this from the calculation above, plus a few nice analytic tricks. Another way to prove
it is by just repeating the induction underlying Bonami’s Lemma.

One can also conclude Bonami’s Lemma from the hypercontractivity theorem. Extending the definition
of the noise operator to ρ > 1 via Tρf =

∑
ρ|S|f̂(S)χS , we have for all f of degree k that

∥f∥4 = ∥T1/
√
3T

√
3f∥4 ≤ ∥T√

3f∥2 ≤
√
3
k∥f∥2.
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Raising both sides to the 4th power gives Bonami’s Lemma.
So the hypercontractivity theorem is basically just a reformulation of Bonami’s Lemma, but it says

something different. It quantifies the extent to which Tρ is a “smoothing” operator, i.e., one which mollifies
peaks in the distribution of f(x). You saw in the exercises that Tρ is a contractive map: ∥Tρf∥2 ≤ ∥f∥2, for
instance. The hypercontractivity theorem says that Tρ is actually a hypercontractive map, in that it smooths
out f even when one measures Tρf in a higher norm.

With some more machinery (see Section 10.1 of O’Donnell) one can prove the general hypercontractiv-
ity theorem.

Theorem 3 (Hypercontractivity Theorem). Let f : {−1, 1}n → R and 1 ≤ p ≤ q ≤ ∞. Then ∥Tρf∥q ≤
∥f∥p for 0 ≤ ρ ≤

√
p−1
q−1 .

We won’t prove this, but there is a nice trick to getting another special case “for free” as a consequence
of the (2, 4)-hypercontractivity theorem. It relies on the observation that the noise operator is self-adjoint:

Claim 4. For ρ ∈ R and f, g : {−1, 1}n → R, we have ⟨Tρf, g⟩ =
∑

ρ|S|f̂(S)ĝ(S) = ⟨f, Tρg⟩.

Corollary 5. For all f : {−1, 1}n → R,

∥T1/
√
3f∥2 ≤ ∥f∥4/3.

Proof. Writing T = T1/
√
3, we have

∥Tf∥22 = ⟨Tf, Tf⟩
= ⟨f, TTf⟩
≤ ∥f∥4/3∥TTf∥4 by Hölder’s inequality

≤ ∥f∥4/3∥Tf∥2 by (2, 4)-hypercontractivity.

Dividing both sides by ∥Tf∥2 gives the claim.

2 Small Set Expansion

Let’s take a closer look at what Corollary 5 is saying. The quantity on the left has a nice combinatorial
interpretation. Again letting T = T1/

√
3,

∥Tf∥22 = ⟨Tf, Tf⟩ = ⟨f, TTf⟩ = ⟨f, T1/3f⟩ = Stab1/3[f ].

In the second-to-last equality, we’ve used the fact that TρTσf =
∑

ρ|S|σ|S|f̂(S) = Tρσf .
Thus, Corollary 5 implies

Corollary 6. For all f : {−1, 1}n → R, Stab1/3[f ] ≤ ∥f∥24/3.

So when ∥f∥4/3 is small, f is very noise sensitive. This happens, for example, when f is the 0-1
indicator for a small subset A of the Boolean hypercube with |A| = α2n, whence we have

Stab1/3[1A] ≤ ∥1A∥24/3 = (E[|1A|4/3]3/4)2 = α3/2.

Meanwhile, unpacking the LHS:
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Stab1/3[1A] = Pr
x∼{−1,1}n
y∼N1/3(x)

[x ∈ A, y ∈ A]

= Pr
x∈{−1,1}n

[x ∈ A] · Pr
x∼{−1,1}n
y∼N1/3(x)

[y ∈ A | x ∈ A]

= α · Pr
x∼A

y∼N1/3(x)

[y ∈ A].

Thus we conclude that
Pr
x∼A

y∼N1/3(x)

[y ∈ A] ≤
√
α.

This can be interpreted as follows. Choose a random point x ∈ A, and then flip each bit independently with
probability 1/3, then we end up at a point y that is outside of A with probability at least 1−

√
α. The bound

is essentially tight for Hamming balls. Using the general (p, 2)-hypercontractivity theorem, one can prove a
stability upper bound of α2/(1+ρ) for any noise value ρ ∈ [0, 1].

3 The Kahn-Kalai-Linial Theorem

In 1985, Ben-Or and Linial asked the following question in social choice. Let f : {−1, 1}n → {−1, 1} be
an unbiased monotone voting rule. Suppose candidate b ∈ {−1, 1} gets to bribe k of the voters, fixing their
votes to b. To what extent does this vote-fixing affect the outcome of the election?

This is closely related to the influences of the function f . If just one voter i is bribed to vote for candidate
b, then the bias of f changes to

E[f |xi=b] = f̂(∅) + bf̂(i) = bInf i[f ]

for unbiased, monotone f . Thus, the power afforded by bribing one voter is given by

MaxInf [f ] = max{Inf i[f ] | i ∈ [n]}.

Ben-Or and Linial constructed the “Tribes” function Tribesn : {−1, 1}n → {−1, 1} given by Tribesn =
ORs(ANDw, . . . ,ANDw) where s ≈ n/ log n and w ≈ log(n/ log n). The (awkward) setting of pa-
rameters ensures that Tribesn is nearly unbiased. Moreover, thinking of Tribesn as a voting rule, voter
i is pivotal if and only if a) all other voters in i’s tribe vote −1 and b) all other tribes produce the out-
come +1. For uniformly random votes, this happens with probability O(2−w) = O(log n/n). Thus,
MaxInf [Tribesn] = O(log n/n).

Ben-Or and Linial made the conjecture, later proved by Kahn, Kalai, and Linial, that this is optimal. Up
to constant factors, the Tribes function has the smallest max influence amongst all unbiased functions.

Theorem 7 (KKL Theorem). For any f : {−1, 1}n → {−1, 1}, we have MaxInf [f ] ≥ Var [f ] ·
Ω(log n/n).

Note that this if a Boolean function is unbiased, Var [f ] = 1. Thus, this statement generalizes the above
claim to functions f that are not too biased.
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Going back to Ben-Or and Linial’s original bribery question, one can use the KKL Theorem to show the
following. If f is a monotone voting rule that is not too biased, then either candidate b can bribe O(n/ log n)
voters to bias the election to, say, 99% in their favor.

For simplicity, we will prove the KKL Theorem when f is unbiased, so Var [f ] = 1. We’ll prove it
using the following lemma.

Lemma 8 (Edge-Isoperimetric KKL). Let f : {−1, 1}n → {−1, 1} be unbiased. Then

MaxInf [f ] ≥ 9

I[f ]2
· 9−I[f ].

The reason for the name is as follows. Recall that if f is the {±1}-indicator for a set A, we can think of
I[f ] as n-times the fraction of the hypercube’s edges which are on the boundary of A. Poincaré’s inequality
tells us that I[f ] ≥ Var [f ] = 1 for all balanced functions, and is attained when f is a dictator. KKL tells us
that if I[f ] ≤ K, so A has a near-minimal size boundary, then it must still be similar to a dictator, i.e., there
is a coordinate with influence at least 2−O(K).

Proof of KKL from Lemma 8. We consider two cases.
Case 1: If I[f ] ≥ log n/8, then by averaging, there exists an i such that Inf i[f ] ≥ log n/8n, so we’re

done.
Case 2: If I[f ] ≤ log n/8, then by Lemma 8,

MaxInf [f ] ≥ Ω

(
1

log2 n

)
· 9− logn/8 = Ω

(
1

√
n log2 n

)
= Ω

(
log n

n

)
.

Proof of Lemma 8. To prove the lemma, we estimate the noise stability of f in terms of its influences in two
ways. One one hand:

Stab1/3[f ] =
∑
S⊆[n]

3−|S|f̂(S)2 = E
S∼Sf

[
3−|S|

]
≥ 3−E[|S|] = 3−I[f ]. (1)

Here, we’ve used the fact that the function φ(s) = 3−s is convex, together with Jensen’s inequality.
One the other hand, since f is unbiased,

Stab1/3[f ] =
∑
S ̸=∅

3−|S|f̂(S)2

≤ 1

3

∑
S ̸=∅

|S|3−|S|+1f̂(S)2

=
1

3

n∑
i=1

∑
S∋i

3−|S|+1f̂(S)2

=
1

3

n∑
i=1

Stab1/3[Dif ].

Now applying Corollary 6 to each term:

Stab1/3[Dif ] ≤ ∥Dif∥24/3 = (E[|Dif |4/3])3/2 = Inf i[f ]
3/2.
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Hence

Stab1/3[f ] ≤
1

3

n∑
i=1

Inf i[f ]
3/2 ≤ 1

3

√
MaxInf [f ] ·

n∑
i=1

Inf i[f ] =
1

3

√
MaxInf [f ] · Inf [f ]. (2)

Combining (1) and (2) gives the lemma.

Related ideas can be used to prove Friedgut’s junta theorem:

Theorem 9. For every 0 < ε ≤ 1 and every f : {−1, 1}n → {−1, 1}, the function f is ε-close to an
exp(O(I[f ]/ε))-junta.

4 Other Applications

We now state a few other applications of the general (2, q)-hypercontractivity theorem.

Theorem 10 ((2, q)-Hypercontractivity). Let f : {−1, 1}n → R and 2 ≤ q ≤ ∞. Then ∥Tρf∥q ≤ ∥f∥2 for

0 ≤ ρ ≤
√

1
q−1 .

The same argument we used to deduce Bonami’s Lemma from (4, 2)-hypercontractivity yields

Theorem 11. Let f : {−1, 1}n → R have degree at most k. Then ∥f∥q ≤ (q − 1)k/2∥f∥2 for every q ≥ 2.

This lets us derive exponential concentration bounds for low-degree polynomials. Recall that the Cher-
noff bound tells us that the linear function

∑n
i=1 aixi exceeds t standard deviations with probability exp(−Ω(t2)).

Degree-k polynomials exceed t standard deviations with probability exp(−Ω(t2/k)).

Theorem 12. Let f : {−1, 1}n → R have degree at most k. Then for any t ≥ (2e)k/2,

Pr
x∼{−1,1}n

[|f(x)| ≥ t∥f∥2] ≤ exp

(
− k

2e
t2/k

)
.

Proof. By normalizing f , we may assume ∥f∥2 = 1. Let q ≥ 2 be a parameter to be chosen later. Then

Pr[|f(x)| ≥ t] = Pr[|f(x)|q ≥ tq]

≤ t−qE[|f(x)|]q by Markov

≤ t−q(q − 1)kq/2∥f∥q2 by hypercontractivity

≤

(
qk/2

t

)q

.

Now set q = t2/k/e.

5


