
CAS CS 599 B: Mathematical Methods for TCS

Lecturer: Mark Bun Spring 2022

Lecture Notes 8:

Intro to Pseudorandomness, Bounded Independence

Reading.

• Vadhan, Pseudorandomness, §2.1-2.3, 3.5

Pseudorandomness is the study of objects that behave as if though they were random, despite being
constructed using little or no randomness. Some examples:

• Prime numbers. There’s nothing random about them, but in many respects they appear as though they
were strewn about randomly within the natural numbers. For example, the Siegel-Walfisz Theorem
implies that 25% of primes end in each of the digits 1, 3, 7, 9, which is what you would expect if they
were distributed randomly. This perspective was essential in Green and Tao’s 2004 proof that the
primes contain arbitrarily long arithmetic progressions.

• Pseudorandom distributions. The uniform distribution on {−1, 1}n is specified by a sample space
of size 2n. Many randomized algorithms do not need this degree of randomness, and can in fact be
simulated using distributions with much smaller sample spaces. When these sample spaces are small
enough, they can be efficiently enumerated over, removing the need for randomness entirely. This is
the idea behind derandomization of algorithms using pseudorandom generators.

• Expander graphs. Expanders are sparse graphs whose connectivity properties make them look like
random graphs. For instance, the destination of a short random walk on an expander will mimic a
uniformly random vertex.

1 Examples of Randomness in Computation

Primality Testing. Most primaility tests used in practice are probabilistic tests, in that they make random
decisions and may output the wrong answer with some probability. For example, the Miller-Rabin test is
a poly-time algorithm with the following guarantee. On input a prime number, it always outputs “prime.”
But on input a composite number, it incorrectly reports “prime” with probability up to 1/4. In complexity
parlance, this places the primality problem in the class coRP.

The AKS primaility testing algorithm is deterministic and poly-time, but slower in theory and practice.

Polynomial Identity Testing. Given two degree-d polynomials p, q over a field F, is it the case that p ≡ q
as formal polynomials? There is a simple randomized algorithm for this problem. Let S ⊆ F be any set of
size at least 2d. Sample a point x0

R← S uniformly at random. If p(x0) = q(x0) output “p ≡ q”; otherwise,
output “p ̸≡ q”. The algorithm always succeeds when p ≡ q, while the Schwartz-Zippel Lemma below
shows that if p ̸≡ q, it fails with probability at most d/|S| ≤ 1/2.

1

Lemma 1. If f is a nonzero polynomial over a field F, and S ⊆ F is finite, then

Pr
x←S

[f(x) = 0] ≤ deg(f)

|S|
.

When one takes appropriate care to define how polynomials are given to algorithms as input, this algo-
rithm shows that polynomial identity testing (PIT) is in coRP. It is an important open problem to determine
whether PIT also has an efficient deterministic algorithm.

MAX-CUT. Given an undirected graph G = (V = [n], E) and subset C ⊆ V , define cut(C) = {(i, j) |
i ∈ C, j /∈ C}. The MAX-CUT problem is to find a set C ⊆ V maximizing cut(C).

This is a classic NP-hard problem, but there is a simple randomized algorithm that approximates the
maximum cut to within a factor of 1/2. Just choose C at random by placing each vertex u ∈ V into C
independently with probability 1/2. By linearity of expectation,

E[| cut(C)] =
∑
e∈E

Pr[e is cut] =
|E|
2

.

Since the maximum cut in any graph has size at most |E|, this serves as an expected 1/2-approximation.

2 Derandomized MAX-CUT via Pairwise Independence

Our randomized approximation algorithm for MAX-CUT was stated using independent random placements
of vertices into C. But we didn’t need the full brunt of uniform randomness. Letting ri be the ±1-indicator
for whether vertex i is included in C, all we needed was

∀i ̸= j
1

2
= Pr[(i, j) is cut] = Pr[ri ̸= rj].

The motivates the following definition:

Definition 2. A sequence of random variables r1, . . . , rn ∈ {−1, 1}n are pairwise independent if for all
i ̸= j, the pair (ri, rj) is uniform over {−1, 1}2.

Recall that generating n truly uniform bits requires a sample space of size 2n. We can n pairwise
independent bits much more efficiently using a sample space of size O(n).

Proposition 3. Let x1, . . . , xk be i.i.d. uniform bits. For each subset S ⊆ [k], with S ̸= ∅, let

rS = χS(x1, . . . , xk).

Then the 2k − 1 random variables (rS)S ̸=∅ are pairwise independent.

Thus, we can generate n = 2k − 1 pairwise independent bits using k = log(n+ 1) uniform bits, which
can be sampled using a sample space of size 2k = n+ 1.

Proof. It suffices to show that

1. E[ri] = 0 (the bits are unbiased), and

2

2. E[rirj] = 0 (every pair of bits is independent).

For the first condition, E[rS] = E[χS] = 0 since S is nonempty. For the second condition, let S ̸= T be
nonempty sets. Then E[rSrT] = E[χSχT] = E[χS∆T] = 0.

Pairwise independence not only lets us reduce the randomness used in our MAX-CUT approximation; it
lets us completely eliminate it. The idea is to simply enumerate over the entire (small) sample space needed
to generate pairwise independent r.v.’s.

Deterministic 1/2-approximation to MAX-CUT:
On input (V = [n], E):

1. Let k = ⌈log n+ 1⌉. For every sequence of bits x1, . . . , xk ∈ {−1, 1}k:

2. Run the randomized algorithm for MAX-CUT using (rS = χS(x))S ̸=0 as the random choices.

3. Output the largest cut constructed.

This works because the pairwise independent MAX-CUT algorithm guarantees that

E
x1,...,xk

[cut(S)] =
|E|
2

.

Hence, there must exist an assignment to the bits x1, . . . , xk yielding a cut S whose value is at least this
expectation.

3 Bounded Independence

The definition of pairwise independence extends naturally to k-wise independence for larger k.

Definition 4. Random variables r1, . . . , rn ∈ {−1, 1}n are k-wise independent if, for every |S| = k, we
have that (ri)i∈S is uniformly random in {−1, 1}k, i.e., for every t ∈ {−1, 1}k, we have Pr[(ri)i∈S =
(t1, . . . , tk)] = 2−k.

Proposition 5 (Bounded independence, equivalent definition for bits). Random variables r1, . . . , rn ∈
{−1, 1}n are k-wise independent if and only if for every 0 < |S| ≤ k, we have E[χS(r1, . . . , rn)] = 0.

Proof. For the forward direction, suppose r1, . . . , rn are k-wise independent. Then for every 0 < |S| ≤ k.

E[χS(r)] = E

[∏
i∈S

ri

]
=

∏
i∈S

E[ri] = 0.

For the reverse direction, suppose E[χS(r1, . . . , rn)] = 0 for every 0 < |S| ≤ k. Let |S| = k and
t ∈ {−1, 1}k. Let

ft(r) =

{
1 if (ri)i∈S = (t1, . . . , tk)

0 otherwise.

3

Then

Pr[(ri)i∈S = (t1, . . . , tk)] = E
r
[ft(r)]

=
∑
T⊆S

f̂t(T)E
r
[χT (r)]

= f̂t(∅)
= E

x∼{−1,1}n
[ft(x)]

= 2−|S|.

Definition 6. Random variables r1, . . . , rn ∈ [m] are k-wise independent if for all |S| = k, we have that
(ri)i∈S is uniformly distributed in [m]k.

Theorem 7 (Construction of k-wise independent r.v.s). Let F be a finite field. There exists an efficiently
computable collection of k-wise independent random variables for n = m = |F| that can be sampled using
k log |F| uniformly random bits.

Proof. Let a0, . . . , ak−1 be uniformly random elements of F. For each y ∈ F, let

ry = a0 + a1y + a2y
2 + · · ·+ ak−1y

k−1.

We claim that (ry)y∈F is k-wise independent. To do this, we will show that for all sets S ⊆ F with |S| = k
and all t1, . . . , tk, there is a unique polynomial p of degree k − 1 such that p(yi) = ti for all yi ∈ S. This
suffices because it implies that

Pr[(ry)y∈S = (t1, . . . , tk)] =
1

|F|k
=

1

mk
.

We show that such a polynomial p exists by constructing it using the Lagrange interpolation formula:

p(y) =

k∑
i=1

ti ·
∏
j ̸=i

y − yj
yi − yj

.

It’s unique because the construction of this polynomial represents a surjective map from the Fk (the t’s)
to Fk (coefficients of the polynomial), which must be a bijection.

4

