Weighted Polynomial Approximations:
Limits for Learning and Pseudorandomness

Mark Bun and Thomas Steinke

Harvard University

August 24, 2015



Derandomizing Concentration Inequalities

m Chernoff-Hoeffding Bound: Let v € R" and U,, € {—1,1}" be
uniform. Then

Pr{[{Un, v)] = TJo]l2] < exp(~Q(T2)).

m Algorithmic applications, e.g. dimensionality reduction via
Johnson-Lindenstrauss

m Motivating question: What pseudorandom X suffice in place
of U,?



This Talk

m Main result: Lower bound for derandomizing Chernoff via
k-wise independence

m (Non-constructive) proof by way of polynomial approximations

m Similar ideas give lower bounds for agnostically learning
halfpsaces



Why k-Wise Independence?

X € {—1,1}" is k-wise independent if every subset of k variables
is uniform:
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m Simple and pervasive notion of pseudorandomness
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Chernoff Bound from k-Wise Independence

[Schmidt-Siegel-Srinivasan93]

Proof of Chernoff by moment bounds: Let v € R™ be a unit vector

Pr[[(Un, v)| > T] = Pr[((Un, v))* > T*]

E[(U,,v)*

< w (Markov's Inequality)
kk/2

< T (Khintchine-Kahane)

m For a tail bound of § and T'= /log(1/4), it suffices to take
k = O(log(1/4))

m Can replace U,, with any k-wise independent X, since
E[(X,0)"] = E[{Uy, v)"]



Pseudorandom Generators for Chernoff

A k-wise independent X requires seed length O(klogn) [ABI86]
— PRG with seed length O(logn - log(1/6)) = O(log® n)
Think of 6 = 1/ poly(n)

Question: Is the [SSS93] analysis optimal? (Or can k be reduced?)

Other PRGs for Chernoff:

Construction Seed length
Probabilistic method O(logn +1og(1/6)) = O(logn)
Small-bias spaces [NN90] O(logn -log(1/4)) = O(log” n)
PRG for small space [Nis92,INW94] | O(logn - log(n/d)) = O(log” n)
PRG for Fourier shapes [GKM15] | O(logn + log(1/6)) = O(logn)



Main Result

Theorem (Main)

Let 6 < 1/poly(n) and T = ©(\/log(1/6)). For k = Q(log(1/9)),
there exists a k-wise independent X for which

Pr{|Xi +-+ X,| >T/n] > 4.

m Matches upper bound of [SSS93]
m Previous lower bound [SSS93] of

s 0 (1E00)

logn

is constant for 6 = 1/ poly(n)



Proof Overview

Dual formulation of problem [Bazzi07, DGJSV09]:

Chernoff bound via k-wise independence
=
Threshold function well-approximated by a degree-k
polynomial

Lower bound k using real approximation theory



LP and dual formulations of derandomizing Chernoff
by k-wise independence



Primal Formulation [Bazzi07]

“What is the worst tail bound given by a k-wise independent X 7"

1n




Primal Formulation [Bazzi07]

“What is the worst tail bound given by a k-wise independent X7
Let ¥(z) = Pr[X = z]

max > (@) 1w+ + @] > TVn)

ze{-1,1}"
st Y (x) xs(@) =0 for all |S| < k
ze{-1,1}"
> ) =1
ze{—-1,1}"

0<y(x)<1 forall z € {—1,1}"



Dual Formulation [Bazzi07]

“What is the smallest Li-norm of any degree-k upper sandwiching
polynomial?”

min 27" Z p(z)

b ze{-1,1}"
s.t. deg(p) < k
p(z) > 1(|xy + -+ xp| > Ty/n) forallxe{-1,1}"



Dual Formulation [Bazzi07]

“What is the smallest Li-norm of any degree-k upper sandwiching
polynomial?”

Theorem: There exists a k-wise independent X with a tail bound
worse than §
=
Every upper sandwich with Li-norm at most § has degree greater
than &



Goal: Lower bound the degree of any upper
sandwich with low L;-norm



Simplifying the Problem

Symmetrization [MinskyPapert69]

Any upper sandwich p can be turned into a univariate p¥™:

—n —Tyn Tyn n

deg(p™™) < deg(p)
p¥™ is an upper sandwich for univariate threshold function

Li-norm of p = Li-norm of p>™ under binomial distribution
p p



Simplifying the Problem

Approximation by a Gaussian

Li-norm of p®™ under binomial distribution

~
~~
sym

Li-norm of p®™ under Gaussian

|®|““\l| w
Tvn n -n —Tva Ty/n n

-n ~Tya

Technical step: p¥™ bounded at integers = p*™ bounded on reals
[EhlichZeller64]



Simplifying the Problem

Approximation by a Gaussian

deg(p¥™) = k and L1 (p¥™) < 0 (under binomial distribution)
—

pY™(t) < on for all t € [—Vkn,VEkn|

Ij/‘l‘ l.
—n Tyn n

~Tvn -n -Tvn —vVkn Vkn Tvn n

Technical step: p®™ bounded at integers = p*¥™ bounded on reals
[EhlichZeller64]



The Final Step

m Let p be a degree-k upper sandwich for
1(|wy + - -+ + 0| > T/n) with Li(p) <6 < 1/n*
m — There exists univariate p>™ with

deg(p™™) < k,
p¥Y™(+T+/n) > 1, and
0 < p¥™(t) < dn for all t € [—Vkn, Vkn]|

Vikn Tvn

k
m p¥™(Ty/n) < 6n - Chebyshev,, (L\/%?) <on- (z%)
m Conclusion: k& > Q(log(1/6))



Recap

Theorem (Main)
Let 6 < 1/poly(n) and T = ©(/log(1/6)). For k = Q(log(1/9)),

there exists a k-wise independent X for which

Pr[|X; + -+ Xyu| > T/n] > 6.

Dual formulation of problem [Bazzi07, DGJSV09]:

Chernoff bound via k-wise independence
-
Threshold function well-approximated by a degree-k
polynomial

By real approximation theory, k£ > log(1/6)



Open Questions

m Explicit bad k-wise independent distribution?
(cf. dual witnesses for approximate degree lower bounds
[Spalek08, B.-Thaler13])

m Seed length needed for small-bias spaces? XORs of small-bias
spaces?



Thank you!



Agnostically Learning Halfspaces



Learning with Noise: The Agnostic Model

"Techno Nightmares"
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Agnostically Learning Halfspaces

[KalaiKlivansMansourServedio05] gave an efficient algorithm
under distributional assumptions

m E.g., if distribution on examples in R" is log-concave, then
any halfspace ~ a low-degree polynomial

Question: Can the log-concavity assumption be relaxed?

m This work: For mildly log-convex distributions, there exist
halfspaces that cannot be approximated by polynomials of any
degree

m Draws on Lj-approximation theory [NevaiTotik86,87]
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