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Derandomizing Concentration Inequalities

Chernoff-Hoeffding Bound: Let v ∈ Rn and Un ∈ {−1, 1}n be
uniform. Then

Pr[|〈Un, v〉| ≥ T‖v‖2] ≤ exp(−Ω(T 2)).

Algorithmic applications, e.g. dimensionality reduction via
Johnson-Lindenstrauss

Motivating question: What pseudorandom X suffice in place
of Un?



This Talk

Main result: Lower bound for derandomizing Chernoff via
k-wise independence

(Non-constructive) proof by way of polynomial approximations

Similar ideas give lower bounds for agnostically learning
halfpsaces



Why k-Wise Independence?

X ∈ {−1, 1}n is k-wise independent if every subset of k variables
is uniform:

Simple and pervasive notion of pseudorandomness

Naturally gives rise to the Chernoff bound



Chernoff Bound from k-Wise Independence
[Schmidt-Siegel-Srinivasan93]

Proof of Chernoff by moment bounds: Let v ∈ Rn be a unit vector

Pr[|〈Un, v〉| ≥ T ] = Pr[(〈Un, v〉)k ≥ T k]

≤ E[〈Un, v〉k]
T k

(Markov’s Inequality)

≤ kk/2

T k
(Khintchine-Kahane)

For a tail bound of δ and T =
√

log(1/δ), it suffices to take
k = O(log(1/δ))

Can replace Un with any k-wise independent X, since
E[〈X, v〉k] = E[〈Un, v〉k]



Pseudorandom Generators for Chernoff

A k-wise independent X requires seed length O(k log n) [ABI86]
=⇒ PRG with seed length O(log n · log(1/δ)) = O(log2 n)
Think of δ = 1/poly(n)

Question: Is the [SSS93] analysis optimal? (Or can k be reduced?)

Other PRGs for Chernoff:

Construction Seed length

Probabilistic method O(log n+ log(1/δ)) = O(log n)

Small-bias spaces [NN90] O(log n · log(1/δ)) = O(log2 n)

PRG for small space [Nis92,INW94] O(log n · log(n/δ)) = O(log2 n)

PRG for Fourier shapes [GKM15] Õ(log n+ log(1/δ)) = Õ(log n)



Main Result

Theorem (Main)

Let δ ≤ 1/ poly(n) and T = Θ(
√

log(1/δ)). For k = Ω(log(1/δ)),
there exists a k-wise independent X for which

Pr[|X1 + · · ·+Xn| ≥ T
√
n] > δ.

Matches upper bound of [SSS93]

Previous lower bound [SSS93] of

k ≥ Ω

(
log(1/δ)

log n

)
is constant for δ = 1/ poly(n)



Proof Overview

1 Dual formulation of problem [Bazzi07, DGJSV09]:

Chernoff bound via k-wise independence
⇔

Threshold function well-approximated by a degree-k
polynomial

2 Lower bound k using real approximation theory



LP and dual formulations of derandomizing Chernoff
by k-wise independence



Primal Formulation [Bazzi07]

“What is the worst tail bound given by a k-wise independent X?”



Primal Formulation [Bazzi07]

“What is the worst tail bound given by a k-wise independent X?”
Let ψ(x) = Pr[X = x]

max
ψ

∑
x∈{−1,1}n

ψ(x) · 1(|x1 + · · ·+ xn| ≥ T
√
n)

s.t.
∑

x∈{−1,1}n
ψ(x) · χS(x) = 0 for all |S| ≤ k

∑
x∈{−1,1}n

ψ(x) = 1

0 ≤ ψ(x) ≤ 1 for all x ∈ {−1, 1}n



Dual Formulation [Bazzi07]

“What is the smallest L1-norm of any degree-k upper sandwiching
polynomial?”

min
p

2−n
∑

x∈{−1,1}n
p(x)

s.t. deg(p) ≤ k
p(x) ≥ 1(|x1 + · · ·+ xn| ≥ T

√
n) for all x ∈ {−1, 1}n



Dual Formulation [Bazzi07]

“What is the smallest L1-norm of any degree-k upper sandwiching
polynomial?”

Theorem: There exists a k-wise independent X with a tail bound
worse than δ

⇔
Every upper sandwich with L1-norm at most δ has degree greater

than k



Goal: Lower bound the degree of any upper
sandwich with low L1-norm



Simplifying the Problem

Symmetrization [MinskyPapert69]

Any upper sandwich p can be turned into a univariate psym:

1 deg(psym) ≤ deg(p)

2 psym is an upper sandwich for univariate threshold function

3 L1-norm of p = L1-norm of psym under binomial distribution



Simplifying the Problem

Approximation by a Gaussian

L1-norm of psym under binomial distribution
≈

L1-norm of psym under Gaussian

Technical step: psym bounded at integers ⇒ psym bounded on reals
[EhlichZeller64]



Simplifying the Problem

Approximation by a Gaussian

deg(psym) = k and L1(p
sym) ≤ δ (under binomial distribution)

=⇒
psym(t) ≤ δn for all t ∈ [−

√
kn,
√
kn]

Technical step: psym bounded at integers ⇒ psym bounded on reals
[EhlichZeller64]



The Final Step

Let p be a degree-k upper sandwich for
1(|x1 + · · ·+ xn| ≥ T

√
n) with L1(p) ≤ δ ≤ 1/n4

=⇒ There exists univariate psym with

1 deg(psym) ≤ k,
2 psym(±T

√
n) ≥ 1, and

3 0 ≤ psym(t) ≤ δn for all t ∈ [−
√
kn,
√
kn]

psym(T
√
n) ≤ δn · Chebyshevk

(
T
√
n√
kn

)
≤ δn ·

(
2T√
k

)k
Conclusion: k ≥ Ω(log(1/δ))



Recap

Theorem (Main)

Let δ ≤ 1/ poly(n) and T = Θ(
√

log(1/δ)). For k = Ω(log(1/δ)),
there exists a k-wise independent X for which

Pr[|X1 + · · ·+Xn| ≥ T
√
n] > δ.

1 Dual formulation of problem [Bazzi07, DGJSV09]:

Chernoff bound via k-wise independence
⇔

Threshold function well-approximated by a degree-k
polynomial

2 By real approximation theory, k ≥ log(1/δ)



Open Questions

Explicit bad k-wise independent distribution?
(cf. dual witnesses for approximate degree lower bounds
[Špalek08, B.-Thaler13])

Seed length needed for small-bias spaces? XORs of small-bias
spaces?



Thank you!



Agnostically Learning Halfspaces



Learning with Noise: The Agnostic Model

"Nature"

"Techno Nightmares"
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Agnostically Learning Halfspaces

[KalaiKlivansMansourServedio05] gave an efficient algorithm
under distributional assumptions

E.g., if distribution on examples in Rn is log-concave, then
any halfspace ≈ a low-degree polynomial

Question: Can the log-concavity assumption be relaxed?

This work: For mildly log-convex distributions, there exist
halfspaces that cannot be approximated by polynomials of any
degree

Draws on L1-approximation theory [NevaiTotik86,87]
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