Fingerprinting Codes and the Price of Approximate Differential Privacy June 1, 2014

Mark Bun
Jonathan Ullman
Salil Vadhan

Harvard University

Privacy-Preserving Data Analysis

Want curators that are:

Private

Accurate

•Efficient

Privacy-Preserving Data Analysis

Want curators that are:

Private

Accurate

◆Efficient

Privacy-Preserving Data Analysis

Want curators that are: *Differentially

- Private
- Statistically Accurate
- Sample **Efficient**

What This Talk is About

- Sample complexity for approx. differential privacy
- MAIN RESULT: For high-dimensional data,
 Privacy + Accuracy requires more samples than
 Accuracy alone

```
e.g. d attribute means Accuracy: \Theta(\log d)
Privacy + Accuracy: \tilde{\Theta}(d^{1/2})
```

New techniques for privacy lower bounds

Differential Privacy

[DN03+Dwork, DN04, BDMN05, **DMNS06**, **DKMMN06**]

D and D' are **neighbors** if they differ on one row

small const., e.g. $\varepsilon = 0.1$

"cryptographically small" need $\delta \ll 1/n$, often $\delta = \text{negl}(n)$

M is (ε, δ) -differentially private if for all neighbors D, D' and $T \subseteq Range(M)$:

 X_1 X_2 M \mathbf{X}_{n}

 $Pr[M(D') \subseteq T] \le (1+\epsilon)Pr[M(D) \subseteq T] + \delta$

Counting Queries

"What fraction of the rows of D satisfy some property q?"

E.g. attribute means q = Skywalker? q(D) = 3/4

DarkSide?	Twin?	Skywalker?	< 3ft?
0	0	0	1
0	1	1	0
0	1	1	0
1	0	1	0

M is α -accurate for Q if $|a_i - q_i(D)| < \alpha$ for every i

(Privately) Answering Attribute Means

[DN03, DN04, BDMN05, DMNS06]

Twin?

0

d binary attributes

0 0 0 0 n rows

> 3/4 Noise(O(1/n))

Skywalker?

 $(\alpha$ -accuracy requires $n \ge 1/\alpha$)

DarkSide?

Privacy

AccuracySample Complexity

< 3ft?

1

0

0

0

(Privately) Answering Attribute Means

[DN03, DN04, BDMN05, DMNS06]

Twin?

d binary attributes

0 0 0 1 0 1 n rows

> 1/4 Noise(O($d^{1/2}/n$))

DarkSide?

1/2 Noise(O($d^{1/2}/n$))

0

3/4

1/4

Noise(O($d^{1/2}/n$))

1

Skywalker?

Noise(O($d^{1/2}/n$))

< 3ft?

1

0

0

0

 $(\alpha$ -accuracy requires $n \ge d^{1/2}/\alpha$

Privacy

AccuracySample Complexity

Sample Complexity

How big does *n* have to be to guarantee statistical accuracy on the population?

Sample Complexity

Answer: $n = \Theta(\log |Q|/\alpha^2)$ [Vap98]

e.g. $\Theta(\log d)$ for attribute means with $\alpha = 0.05$

How big does *n* have to be to guarantee accuracy *and* privacy?

d binary attributes

Question: Is there an additional **price of diff. privacy** over statistical accuracy alone?

d binary attributes

No privacy

$$Q = attribute means$$

 $\alpha = 0.05$

Q, α arbitrary

$$n = \Theta(\log d)$$
[Vap98]

$$n = \Theta(\log|\mathbf{Q}|/\alpha^2)$$
[Vap98]

(0.1, o(1/n))diff. privacy

Upper bound:

	<i>'</i>)		
[DMNS06]			

 $\tilde{\Omega}/\sqrt{1/2}$

 $\forall \mathbf{Q}$: $\tilde{O}(\log |\mathbf{Q}| \cdot d^{1/2}/\alpha^2)$ [HR10]

Lower bound:

$$\widetilde{\Omega}(\log d)$$
[DN03, Rot10]

 $\exists \mathbf{Q}: \max \widetilde{\Omega}(\log |\mathbf{Q}|/\alpha), \widetilde{\Omega}(1/\alpha^2)$ [DN03]

OUR WORK:

$$\tilde{\Omega}(d^{1/2})$$

$$\exists Q: \tilde{\Omega}(\log |Q| \cdot d^{1/2}/\alpha^2)$$

Beyond Reconstruction Attacks

- Tight lower bounds known for (ε, 0)-diff. privacy
 [HT10, Har11], but break even for δ = negl(n) [De11, BNS13]
- Prior lower bounds for (ϵ, δ) -diff. privacy gave reconstruction attacks [DN03, Rot10], which hold even for δ = constant
- This work: Fingerprinting codes enable optimal lower bounds for $(\varepsilon, \delta=o(1/n))$ -diff. privacy (followed by [DTTZ14, BST14])

New Techniques

- Fingerprinting codes → diff. privacy lower bounds
 - $> \widetilde{\Omega}(d^{1/2})$ for attribute means (α const.)

- Composition of sample complexity lower bounds
 - $> \widetilde{\Omega}(kd^{1/2})$ for k-way conjunctions (α const.)
 - $\succ \widetilde{\Omega}$ (log | $\mathbf{Q} | \cdot \mathbf{d}^{1/2} / \mathbf{\alpha}^2$) for arbitrary queries

I want to distribute my new movie

...but the galaxy is full of pirates!

I want to distribute my new movie

...but the galaxy is full of pirates!

Who collude against me!

FP Codes vs. Diff. Privacy

Coalition of *n* pirates

FP Codes vs. Diff. Privacy

Coalition of *n* pirates

FP Codes vs. Diff. Privacy

Trace behaves very differently depending on whether is in the coalition

Fingerprinting codes are the "opposite" of differential privacy!

(Parallels computational lower bounds via traitor-tracing schemes [DNRRV09, U13])

Database of *n* users

Suppose (for contradiction) we have

- A FP code of length d for (n+1) users
- A diff. private M that is accurate for attribute means on ({0,1}^d)ⁿ

Reduction: Use M to break security of the FP code

Database of n users = Coalition of n pirates

Suppose (for contradiction) we have

- A FP code of length d for (n+1) users
- A diff. private M that is accurate for attribute means on ({0,1}^d)ⁿ

Reduction: Use M to break security of the FP code

Database of n users = Coalition of n pirates

- ∃ FP code for *n* users with length *d*
 - ⇒ **d** attribute means require **n** samples

- [Tar03] \exists FP code for $\widetilde{\Omega}(d^{1/2})$ users of length d
 - \therefore attribute means require $n \ge \widetilde{\Omega}(d^{1/2})$

No privacy

$$Q = attribute means$$

 $\alpha = 0.05$

Q, α arbitrary

$$n = \Theta(\log d)$$
[Vap98]

$$n = \Theta(\log |\mathbf{Q}|/\alpha^2)$$
[Vap98]

(1, o(1/n))diff. privacy

Upper bound:

Õ(**d**^{1/2}) [...DMNS06] \forall **Q**: $\tilde{O}(\log |\mathbf{Q}| \cdot d^{1/2}/\alpha^2)$ [HR10]

Lower bound:

 $\tilde{\Omega}(\log d)$ [DN03, Rot10]

 $\exists \mathbf{Q}: \max \tilde{\Omega}(\log |\mathbf{Q}|/\alpha), \tilde{\Omega}(1/\alpha^2)$ [DN03]

OUR WORK:

 $\tilde{\Omega}(d^{1/2})$

SPE

 $\tilde{\Omega}(\log |\mathbf{Q}| \cdot d^{1/2}/\alpha^2)$

Privacy

Accuracy

Sample Complexity

Conclusions

- Fingerprinting codes yield privacy violations beyond reconstruction attacks
- Price of (ϵ, δ) -diff. privacy for high-dimensional data
- Open questions:
 - Sample complexity of computationally efficient algorithms for k-way conjunctions?
 [e.g. BCD+07, GHRU11, UV11, TUV12, DNT13, CTUW14]
 - Combinatorial characterization of sample complexity?
 [e.g. HT10, Har11, NTZ13, BNS13]

Thank you!