Order-Revealing Encryption and the Hardness of Private Learning

January 11, 2016

*Mark Bun*Mark Zhandry

Harvard MIT

Let's do some science!

Scurvy: a problem throughout human history

Caused by vitamin C deficiency

How much vitamin C is enough?

So you collect some data...

So you collect some data...

- Works for any #samples n > n₀
- Works for any threshold, on any underlying distribution

What's the problem?

 The hypothesis threshold reveals someone's data point!

Could even be linked back to Kobbi with the right auxiliary info

Privacy-Preserving Data Analysis

Want curators that are:

Private

Accurate

*****Efficient

Privacy-Preserving Data Analysis

Want curators that are: *Differentially *Accurate *Computationally

◆Differentially ◆ Private

AccurateClassifiers

Computationally Efficient

This Talk

Computational complexity: Does private learning require more computational resources than non-private learning?

Differential Privacy

[Dinur-Nissim03+Dwork, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05, Dwork06, Dwork-McSherry-Nissim-Smith06, Dwork-Kenthapadi-McSherry-Mironov-Naor06]

D and D' are **neighbors** if they Z_1 differ on one row Z_2 M small const., e.g. $\varepsilon = 0.1$ "cryptographically small" require $\delta << 1/n$, often $\delta = \text{negl}(n)$ $e^{\varepsilon} \approx 1 + \varepsilon$ $\mathbf{Z}_{\mathbf{n}}$

M is (ε,δ) -differentially private if for all neighbors D, D' and S⊆Range(M):

 $Pr[M(D') \subseteq S] \le e^{\varepsilon} Pr[M(D) \subseteq S] + \delta$

- Privacy

PAC Learning [Valiant84]

 \mathcal{P} = unknown distribution over domain X

 $C = \text{concept class } \{c: X \rightarrow \{0, 1\}\} \quad H = \text{hypothesis class } \{h: X \rightarrow \{0, 1\}\}$

This talk: $\alpha = \beta = 0.01$

Hypor sis h is α -good if $Pr_{x\sim \mathcal{P}}[h(x) \neq c(x)] \leq \alpha$

M is (α,β) -accurate if for all \mathcal{P} and c, $\Pr_{M,D}[M(D) \text{ is } \alpha\text{-good}] \geq 1-\beta$ M is **efficient** if it runs in time poly($\log |C|$, $1/\alpha$, $1/\beta$)

Private PAC Learning

[Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith08]

 (α, β) -PAC Learning (ε, δ) -Differential Privacy

 $(\alpha, \beta, \epsilon, \delta)$ -Private Learning

Private PAC Learning

[Kasiviswanathan-Lee-Nissim-Raskhodnikova-Smith08]

Algorithm M is a private learner if:

- M is an (α, β) -PAC learner for C
- M is (ε, δ) -differentially private

Why Private Learning?

Abstracts many statistical tasks that are performed on sensitive data

- Learning is intimately connected to privacy
 - ▶ Learning algorithms ⇒ DP algorithms [BLRO8, HT10, HRS12]
 - Privacy ⇒ generalization [McSherry, DFHPRR15, BH15, BNSSSU15]

What can be Learned Privately?

"Private Occam's Razor" [McSherry-Talwar07, KLNRS08]

Sample a nearly consistent hypothesis at random

- Thm: Any finite concept class C is privately learnable...
- ...but in general, sampling is computationally inefficient

Privacy

Known techniques for (efficient) PAC learning:

- Statistical Queries [Kearns93]
- Gaussian elimination for PARITY

Accuracy

Complexity

Evidence for a separation:

- Hardness of representation-dependent private learning [BKN10, Nissim]
 - Private learning can require higher *sample complexity* [BKN10, BNS13, FX14, BNSV15, BNS16]
 - Long tradition of privacy & learning lower bounds via crypto
 - Accuracy
- Complexity

Our Separation

Observation:

Non-private learner only needs to compare the data

Our Separation

Order-Revealing Encryption

[Boldyreva-Chenette-O'Neill11, Pandey-Rouselakis12]

IND-OCPA Security

ORE vs. Order-Preserving Encryption

Order-Revealing

Order-Preserving [Boldyreva-Chenette-Lee-O'Neill09]

Public Comp algorithm

- Ciphertexts themselves ordered
- Known constructions
 Crucial to our standard reduction appriors
 - Security unclear; necessarily leaks more than order
 - "Best possible" IND-OCPA security

Our Separation

Things to prove:

1) C is PAC learnable 2) C is not privately learnable

Proof Ideas

1) PAC Learnability

Weak correctness

 \forall messages x, y: Comp(Enc(x), Enc(y)) = (x < y?)

Strong correctness

 \forall ciphertexts c_0, c_1 : $Comp(c_0, c_1) = (Dec(c_0) \leq Dec(c_1)?)$

2) Hardness of Private Learning

Intuition: ORE forces learner to compare to a known example

Formally: Design an algorithm that "traces" an input example w.h.p.

(Conceptually analogous to [DNRRV09, Ullman13, BUV14, BZ15])

Is Our Assumption Reasonable?

- Constructions of weakly correct ORE:
 - iO [Garg-Gentry-Halevi-Raykova-Sahai-Waters13]
 - Functional encryption [GGHZ14+BS15, BLRSZZ15]

Multilinear Maps

Can build strongly correct ORE from

Weakly correct ORE + NIZKs [Groth-Ostrovsky-Sahai06]

Conclusions

 New source of hardness for private/SQ learning based on order-revealing encryption

Thank you!

- Open questions:
 - Reduce to standard assumptions

Establish separation for "natural" learning problems
 [Ullman-Vadhan11, Daniely-Linial-ShalevShwartz14 et seq.]

Evidence for a Separation

C eff. PAC-learnable, but some representation of C is hard to learn privately [Nissim]

 $C = H = \{f_x(y): h(x) = h(y)?\}$

Any positive example x is a representation of f_x

 \Rightarrow *C* is efficiently representation-learnable

Given positive examples, infeasible to find *new* rep.

⇒ Cannot privately learn a representation x