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Abstract— This paper explores a system for assembling
structures by dropping block components into place. During
and after assembly, the blocks are held together by geometric
interlock, so that fasteners or mortar are only needed to bind
the final block to one of its neighbors. Drop assembly is a
promising strategy for assembly by swimming or flying robots,
as it may allow structures to be built without requiring close
contact with the existing structure. The current paper explores
a mathematical model of interlock, and presents a particular
block design that allows interlock to be achieved using only
gravity. Proof-of-concept demonstrations of the system are
presented using a low-cost and relatively low-precision robot
arm. The paper finally analyses some of the potential limitations
of the approach, particularly including flexing of the structure
due to manufacturing tolerance limitations.

I. INTRODUCTION

An assembly of rigid bodies is interlocking if there are

no possible motions of any collection of the bodies relative

to the other bodies; the entire assembly moves only as a

single rigid body. Jigsaw puzzles are typically interlocked

in the plane, but are assembled from above. Burr puzzles

are nearly interlocked in space – there is a single assembly

order, and if the last piece to be assembled is glued to a prior

piece, the puzzle is completely interlocked.

This paper shows that some nearly-interlocked planar and

3D structures can be built by an extremely simple method:

dropping each piece and allowing gravity to pull the piece

into place.

This work is motivated by the eventual prospect of con-

structing structures with aerial drones, or underwater with

submersible vehicles. Flying or swimming robots permit

great ease of access to the structure being built, but lack

of a fixed base places great demands on the control of the

robot, so that neither the robot nor the component being

placed crashes into the existing structure. The goal of the

present work is to design components that can be dropped

into place, so that the robot need not approach the existing

structure too closely. Drop assembly also motivates a study

of compliance – funnel-like joints in the existing structure

can remove error and allow imperfectly positioned blocks to

slide into place.

It is surprising to us that an interlocking structure can be

built using only gravity; imagine an interlocking planar jig-

saw puzzle that can be assembled without lifting any pieces

off the table, and using only forces from one direction. There

are two simple ideas to the approach: 1) prismatic joints

allow motion in only one direction, and conflicts between

those directions can jam or interlock an assembly, and 2)

angled joints can serve as ramps that convert gravitational

force in one direction to motion in another direction. Sec-

Fig. 1: Robot arm assembling interlocking blocks.

tion III builds the mathematical model of nearly interlocking

structures constructed using only prismatic joints.

Section IV shows a particular design of two types of

blocks that allow drop assembly of nearly interlocking struc-

tures, by adding angled ramps to the simplified blocks from

the prior section. These blocks may be laid out in a standard

brick pattern, allowing interesting shapes of structures to be

built without the need for cement, glue, or other fasteners

except on the last block placed – see Figure 1.

Interlocking blocks have some advantages relative to other

construction techniques. Relative to ‘harden in place’ ap-

proaches used in large- and small-scale 3D printing, the

component-based design may allow disassembly for re-use

or repair. Components may be fabricated off-site and may be

heterogeneous, containing reinforcing materials or embedded

electronics. LEGO blocks are component-based and provide

some of the same advantages of our design, but the friction

locks that connect LEGOs are delicate and require high

manufacturing precision as well as fairly precise assembly.

Interlocking blocks also have potential disadvantages.

Mortarless assembly can leave small gaps between blocks,

leading to undesired aggregate flexibility of the structure.

Section VI explores some of these potential weaknesses,

using a linearized representation of the configuration space

to explore flexing and variation of structure shape based on

this local motion of the components.

II. RELATED WORK

The work presented in this paper is related to work done

in interlocking, robotic assembly, self-assembly, and modular

robotics.



(a) Source: Andreas Roever [23] (b) Source: Muns [18]

Fig. 2: Jigsaw puzzles and burr puzzles are examples of interlocking
structures.

A. Interlock

Interlocking pieces play a large part in puzzles and assem-

bly – e.g., jigsaw and burr puzzles (Fig. 2). Snoeyink and

Stolfi [29] give configurations that cannot be taken apart with

two hands. Czyzowicz, Stojmenovic, and Urrutia [6] prove

that polygons with no parallel edges can be immobilized with

three points. More recently, Xin et al. [37] decompose 3D

models into Burr Puzzles with one mobile part called a key;

the puzzles can only be disassembled by removing the key.

Similarly, Song, Fu, and Cohen-Or [31] generate designs for

interlocking structures that are incrementally interlocked as

pieces are added to the structure, which also ensures struc-

tures can only be disassembled in one direction. Generally,

3D printing large structures is challenging. Song et al. [32]

addressed such challenges by decomposing structures into

smaller pieces which are strongly connected, but can still

be assembled or disassembled. Fu et al. [10] showed larger

objects, such as furniture, can be decomposed into overlap-

ping interlocking subsections that can be re-assembled as

an interlocking union of the subsections. In [14], Lensgraf

et al. provide a means of determining the free motions of a

structure, which aids in proving a structure is interlocked.

This work is closest in spirit to work done in [40] and [39].

Our work uses a similar definition of a key from [40], but

we provide our own definition of interlock and provide a

systematic way for proving whether shapes are interlocked.

Caging is a form of interlock; Rimon and Blake [19] formal-

ized the notion of a caging set, where an object is completely

surrounded by two fingers and has some freedom to move,

but cannot escape the fingers. This work was extended to

planar bodies [20] and to three fingers [7]. Rodrı́guez and

Mason established a distinction between stretching caging

and squeezing caging [22] and then later extended the idea

to grasping [21].

B. Robotic Assembly

Drone Assembly is becoming more common. Two quadro-

copters used foam blocks and adhesive to build a 6m

tower in [2]. Magnets and block geometry can passively

aid drone assembly [13, 9]. Using drones for assembly

poses new constraints on weight and size of building blocks;

Willmann et al. [35] use these constraints as the guiding

force behind block fabrication and design. Beyond new block

design restrictions, there are also constraints on the types

of structures that can be built by drones alone [27]. Some

of these restrictions can be overcome by adding features to

the building materials such as magnets [15] or making the

materials very lightweight [2, 4].

Nonprehensile Manipulation has been explored for some

manipulation tasks. Moll and Erdmann [17] explored non-

prehensile manipulation to infer the shape of an object via

tactile sensors. Woodruff and Lynch [36] studied motion

planning and feedback control of nonprehensile manipulation

using sequences of motion primitives. Ryu, Ruggiero, and

Lynch [26] stabilized an object in an upright position when

either the base the object is balanced on or the object

itself rotates to a specific orientation. Dogar and Srinivasa

[8] determined feasible actions based on the mechanics of

pushing. Mason [16] provided a survey of recent work

in nonprehensile manipulation, including a study of using

dynamics to manipulate an object. Geomans and Stappen

[11] used V-shaped traps in vibratory tracks and passive

mechanical compliance to sensorlessly orient parts.

C. Self Assembly and Modular Robotics

Self Assembly Intelligent building blocks can aid robotic

assembly [33, 34]. Zhong Li, Balkcom, and Dollar [41]

propose a method of discretizing a large, planar shape into

connected triangles to cover shapes. Reconstructing shapes

in the plane is possible using simple self-assemble-able

robots [1], and more complex, pre-programmed shapes can

be formed by a swarm of modular robots [25]. Drones

are computationally designed in [9] given a collection of

components.

Modular Robotics Some modular robotic systems have

self-assembly properties [28, 24, 12] that enable small,

programmable robots to form larger structures or to change

shape for different tasks. Yim et al. [38] provide a survey of

current modular robotics systems and challenges. Modular

robots can themselves be fabricated using materials such as

foldable sheets of polyester and laser cut parts [30] and be

used for simple tasks. In [3], a single input signal is used

to control a large swarm of modular robots. Our goal is

somewhat related; we use a single direction of motion to

attach our blocks to a structure.

III. INTERLOCKING MODEL

Figure 3 shows some example blocks that we will use to

illustrate interlock. We introduce our definition of interlock,

and build a set of constraint equations that may be used to

test if a structure is interlocked.

A. Types of Blocks

First, we show a system using square blocks with 60◦ and

30◦ constraints; these simpler blocks illustrate the process of

interlock, but are not particularly reliable for drop assembly,

which motivated a different design in the following sections.

We denote Type A blocks as having three joints at 60◦

and Type B blocks has having three joints at 45◦, as
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Fig. 3: Example configuration with 3 blocks. The blocks are labeled
with the assembly number and the block type.

shown in Figure 3. Blocks connect via prismatic joints into

complementary holes. Bottom joints spike two blocks in the

previous layer, “stapling” the blocks together. Side joints

connect blocks in the same layer.

We consider first an idealized model of the system in

which the connections between each pair of blocks is a

perfect prismatic joint, allowing linear translation but no

rotation.

The last block inserted will only be spiked by one type

of joint, so for our physical implementation we introduce

an external constraint that glues together the last two blocks

after insertion.

B. Constraints

For any pair of touching blocks connected by some joint,

the general form of the constraint is

ni,j,k·(xi−xj , yi−yj , zi−zj) = ni,j,k·(x̂i−x̂j , ŷi−ŷj , ẑi, ẑj),
(1)

where constants x̂, ŷ, and ẑ denote the initial coordinates,

variables x, y, and z denote the current coordinates, and

ni,j,k denotes the unit normal to the line of action of the

joint.

We choose an arbitrary block as block 1, which will be the

reference frame for all other blocks in the system. Although

the entire system acts as a rigid body and can rotate, each

block is connected through a chain of prismatic joints to

block 1, and cannot rotate with respect to any other block.

We therefore omit θ coordinates for the blocks from the

following analysis.

We can define the constraints for systems like the one

shown in Figure 3 and for any arbitrary system using this

form.

To express the constraint on the relative motion of blocks,

we take a time derivative of each constraint equation:

ni,j,k · (ẋi − ẋj , ẏi − ẏj , żi − żj) = 0 (2)

For any particular system, all the constraints can be written

in matrix form as

J · ẋ = 0 (3)

where J is the constraint Jacobian matrix of constraint

equations and x is the vector of block locations. Note that

since only pure translations are permitted by the prismatic

joints, the elements of J are constants. For the first block,

we add two additional rows to J : ẋ1 = 0, ẏ1 = 0, ż1 = 0.

The null space of J thus gives the free motions ẋ. This

suggests a way to check if a system is interlocked: a system

is interlocked if and only if the null space of the constraint

Jacobian is empty.

As an example, consider the three blocks b ∈ {b1, b2, b3}
shown in Figure 3. The normal for the line of action of b3
is [

√
3
2 , −1

2 ] and the normal for the line of action of b2 is

[
√
3
2 , 1

2 ]. Applying these to Equation 1 and Equation 2, we

find a J for the system. The null space of J has a single

column
(

0, 0, 0, 0, 0.5, 0.9
)T

. The free motion in this system

is produced by b3, which can detach from b1 and b2, as

indicated by the entries in the null space. The structure in

Figure 3 is not interlocked.

C. Interlocking patterns

Computing the null space of the constraint Jacobian is a

test to check if a system is interlocked, but we would like

to construct large arbitrary structures that are interlocked by

design. We use the following approach. First, we construct

a small pattern of blocks and use the null-space approach

to prove that it is interlocked. If these interlocked subsets

overlap with some other interlocked subset and this is done

inductively over the structure, we can prove that the entire

structure is interlocked.

Before we present our argument for interlocking through

overlap, we introduce the notion of a key; keys are not unique

to this work and are also presented in [40] and [31]. Because

the structure is assembled by translation, the last block can

always escape; the structure is not interlocked until the key

is bound to the the structure using a fastener of some type.

We will show each subset has a key, and the keys of each

subset become incrementally interlocked as the structure is

assembled. When we say a structure is nearly-interlocked,

we are referring to structures that are locked if the key or

keys are bound to the structure.

Consider the system in Figure 4, where the set of all blocks

is B. Blocks are labeled using a number representing their

place in the global assembly order.

For the system to be interlocked, each block b ∈ B must

also be in a smaller set s such that each set s1∪s2, ..., sn−1∪
sn ≡ B. We define each set s as the smallest subset of

blocks that can be nearly-interlocked. In Figure 4, the nearly-

interlocked subsets are the two quartets highlighted in red

and blue, and a third quartet of blocks {2, 3, 6, 7}.

Consider the blue subset as a standalone structure where

block 6 is the key. Similarly, consider the middle subset as

a standalone structure where block 7 is the key. We can say

both these structures are nearly-interlocked.

Now consider a structure that is the union of the blue sub-

set and the middle subset. We see that block 6 is interlocked

as a part of the middle subset, and block 7 becomes the

structure’s single key.
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Fig. 4: This structure is nearly-interlocked, with block 8 acting as
the key.

(a) Type A blocks (b) Type B blocks

Fig. 5: Rectilinear-z blocks for drop assembly.

If we now consider the union of the red subset with the

new structure we just defined, we see that block 7 will

be interlocked as part of the red subset, and block 8 will

become the sole key. If block 8 is glued in, we have a fully

interlocked structure composed of three smaller overlapping

interlocked structures.

IV. SYSTEM IMPLEMENTATION

We design physical blocks that have the same interlocking

properties as the polygonal blocks discussed in Section III.

The experiments in this section are meant to both exemplify

the key-interlocking definition we present above, and to show

the applicability of this principle to building arbitrary shapes

using a collection of only two types of blocks.

A. Block Design

We design rectilinear-z blocks shown in Figure 5. These

blocks have the same interlocking properties as their simpler

counterparts described in the prior section, but are shaped so

as to permit drop assembly.

We also simplified drop assembly by using a vertical spike

and reducing the 30◦ constraint to 45◦. The blocks are placed

in an ABA pattern to form layers. Each successive layer

changes direction so the blocks are built in a snaking pattern,

and we design the blocks to be symmetric so a block can

be flipped over and used for the next layer. This reduces the

number of different blocks needed to build a structure.

B. Experimental Setup

We built small structures with a 5 DoF Trossen Robotics

WX-200 robot arm, and we also built larger-scale structures

Fig. 6: Robotic assembly setup.

by hand, since the robot has a limited work space. We 3D

printed the blocks shown in Figure 5 using an Ultimaker S3.

The experimental setup used for assembly with the robot

arm is shown in Figure 6. The insertion strategy for blocks

is to pick up a block, position over the next spot in the layer,

and drop the block. The pickup for blocks of the same type

does not change; only the position of the drop-off changes

between blocks. The pick up locations are on either side

of the robot, and the base where the first layer is placed is

directly in front of the robot. Building with the robot arm is

meant to be a proof-of-concept of drop assembly to show the

possibility of automation. We did not optimize the building

setup or the block design for precise pick-ups and drop-offs.

There are slight deviations in the the pitch of the block when

picked up, but typically error is removed as the dropped

block slides into the joint.

V. DROP ASSEMBLY

In this section, we show the structures built with the

robot arm and by hand. The structures built in this section

are planned out manually, and we discuss our plans for an

automated layout algorithm in Section VII.

A. Assembly with a Robot Arm

Figure 7 shows a planar wall built with the robot arm. This

example shows the ability of the blocks to tolerate overhangs,

which we use extensively in the other structures we built by

hand. We choose this structure for the robot to build because

this five block configuration occurs in the other structures,

and so we can see the robot is capable of handling the basic

subsets that the structures are composed of.

B. Building General Structures

Planar A The planar A demonstrates the ability to bring two

separate structures into one, and it also creates bridges over

empty spaces. Additionally, we show that we can build taller

structures that don’t necessarily need very long bases, and we

can remove blocks that are not needed for the interlocking

subsets.

The assembled planar A is shown in Figure 8. The key for

this structure is labeled, as is the assembly order (numbers).



Fig. 7: Planar wall assembled by a robot arm.
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Fig. 8: Planar A with key and global assembly numbers.

This structure is composed of 28 blocks and we build the

structure from smaller interlocked subsets. As an example,

we see that blocks on the left leg {4, 3, 5, 6} are a nearly-

interlocked subset with block 6 acting as the key, as is

{5, 6, 11, 12} with block 12 acting as the key. The other leg

of the structure and the main body have similar subsets that

inductively interlock to reduce to a single key. We can also

verify the structure is locked by picking it up and holding it

without any support, as shown in Figure 9a. We can assemble

structures with holes by ensuring the blocks around the

empty spaces are locally locked without relying on the blocks

that could be in those spaces. We are able to achieve two gaps

close together by ensuring that block 15 and block 16, which

are both adjacent to the gaps, are interlocked with subsets

{13, 14, 15, 22, 21} and {16, 17, 18, 20, 19}, respectively.

Planar S The S is shown in Figure 10, with 44 blocks and 2

keys. The first key is the left block on the top layer, and the

second key is the left block at the tail of the S. We show this

structure is interlocked in Figure 9b by holding the structure

away from the back plane and off the ground, but we also

start to see flexing of the structure, particularly in the middle

of the S. We discuss ways to reduce this flexing by adjusting

(a) (b)

(c)

Fig. 9: Structures held without support to demonstrate interlock.
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Fig. 10: Planar S with labeled keys.
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Fig. 11: Wreath with marked keys and assembly order.

the tolerances of the blocks in Section VI.

Wreath The wreath in Figure 11 has a large hole in the

center, but is nonetheless one of the more stable structures

we built. We also see, as we saw in the S, that we can start at

a common point and build two different threads away from

each other. We imagine repeating the wreath to build a chain

or a lattice.

VI. ANALYSIS OF LIMITATIONS AND CHALLENGES

One of the primary limitations of the approach is that small

gaps between blocks can allow build-up of error throughout

the structure, potentially limiting the size and rigidity of

assemblies. Initially, we attempted to explore this limitation

using the Bullet Physics Engine [5] and PyBullet, but the

simulation tool appears to be unsuitable for the task.

An example of the simulated environment is shown in

Figure 12a, with an example structure of seven blocks. When

the structure is picked up, the top layer begins to pull away

from the previous layer (Figure 12b). We show the same

example (Figure 12c) using the physical versions of the

blocks and find that we do not have the same failures in

the physical system as is apparent in the simulated system;

the multiple components in close proximity appear to cause

the physics engine to permit motion that violates geometric

constraints.

A. Flexing motion in a linearized constraint space

The PuzzleFlex [14] turns interlocked rigid bodies motions

computing to a linear programming problem by modeling

joints as linearized constraints between vertices and another

block’s edge segments. We believe that the framework pro-

vided in PuzzleFlex is efficient and suitable for our case, so

we will use the PuzzleFlex framework to simulate large scale

structures.

(a) Simulation of seven blocks. (b) Top layer pulls away from bot-
tom layer.

(c) Physical structure remains in-
terlocked when picked up.

(d) Simulated in PuzzleFlex.

Fig. 12: The simulation in PyBullet produces a failure ((a) and
(b)) for a structure that is interlocked in the physical version (c).
PuzzleFlex instead correctly determines interlocking (d).

PuzzleFlex framework is designed for 2D blocks flexibility

analysis, so we focus on analyzing these blocks on the

assembly plane. We first project block design in Figure 5 to

a polygon on the assembly plane and removed the bridges

in holes. The removal of them turns blocks into continuous

polygon without holes, which meets with PuzzleFlex input

requirement. There is one more thing we need to worry

about, our blocks are staggered for assemblability. As dis-

cussed in PuzzleFlex [14], these blocks’ motion are limited

in small convex regions in this case. We make the following

modifications to this framework.

B. Modify optimization framework

Assume we have a point p ∈ R
2 on the plane and a

polygon, which consist of n vertices

V = {vi|i ∈ R, i ∈ [0, n], vi ∈ R
2}

is defined as a set collection of line segments

G = {si = [vi, vj ]|vi, vj ∈ V, (j mod n) ≡ (i mod n+ 1)}

Assume function d(p, s), (R2,R4) → R
+ always returns the

shortest Euclidean distance between point p and line segment

s, and let function wind(p,G) return the winding number for

point p regarding polygon G. With these, we then can define

signed distance between point p and polygon G as

g(p,G) =

{

min{d(p, s)|s ∈ G},wind(p,G) = 0

−min{d(p, s)|s ∈ G},wind(p,G) 6= 0
(4)



This function describes the signed distance between a point

and a polygon and zero-level set of this function is our

polygon boundary.

In this way, we defined a new type of constraint between

a point and a polygon. For two polygons GA and GB

which have configuration qA = (xA, yA, θA) and qB =
(xB , yB , θB), assume their transformation matrix are T (qA)
and T (qB). we can build a constraint between any vertex

in A with polygon B and vice versa. For a constraint

between a point pA, which is presented in polygon A’s local

coordinate, and a polygon B, we denote p = T−1
B TApA.

Then constraint’s Jacobian matrix can be represented as

J([qA, qB ]) =

[

∂g(p,GB)

∂qA
,
∂g(p,GB)

qB

]

=

[

∂g(p,GB)

∂p

∂p

∂qA
,
∂g(p,GB)

∂p

∂p

∂qB

]

=

[

∂g

∂p
T−1
B

∂TA

∂qA
pA,

∂g

∂p

∂T−1
B

∂qB
TApA

]

(5)

Let’s denote the objective weight vector by cT and con-

straints distance before optimization by d0. Then we can

solve on the same linear programming problem as in Puz-

zleFlex [14].

max
∆q

cT∆q

subject to J(q)∆q+ d0 ≥ 0
(6)

After getting the configuration changes ∆q, we will update

blocks configuration at m+1 step to q(m+1) = q(m)+t·∆q,

where t is the largest scale value that will not cause any

collision in the new configuration.

With this framework, we can simplify the block inter-

locking analysis to the 2D space and analyze it on a larger

scale. If the optimization on all blocks leads to no separation

between neighboring blocks, we can say the whole structure

is interlocked.

C. Verification with PuzzleFlex

There are several aspects we need to consider to apply this

interlocking design to a structure in the real world. We first

want to confirm this pattern is repeatable and can still keep its

interlocking property in a large scale structure. Secondly, we

need to consider the gap between virtual and real world. For

blocks in physical world, their dimensions are also affected

by tolerance which is controlled by fabrication methods and

material. Tolerance might greatly affect our final interlocking

status. More details will be discussed in Sec. VI-D We

expect to get some estimations of these problems out of the

simulation.

We first examined this modified PuzzleFlex method on the

7 interlocked blocks showed in Fig. 12c. The Result is dis-

played in Fig. 12d. It turns out that PuzzleFlex stopped after

few iterations and determined this structure as interlocked.

This follows our observation in the physical world.

A large scale structure in Fig. 13 is tested by using this

discussed framework. We assume all blocks are placed in

(a) Stacked Minecraft Creeper Head.

(b) Blocks position difference be-
tween optimized and original po-
sition.

(c) Keys need to be glued on
Creeper are showed in red.

Fig. 13: Stacked interlocking blocks create a Minecraft Creeper
Head. Bottom left blocks, its eyes and mouth are fixed in position.

position already, and we are examining their interlocking

status. In this 16 layers structure, we hollowed three areas

intentionally: its eyes and mouth. We placed three fixed black

blocks in these areas. The bottom left-most block is also

fixed to the ground. Additionally, we set an extra constraint

to glue the last two pieces of this structure (top left-most 2

pieces) together. The same constraint is also added to the last

two pieces beneath the mouth. The whole structure remains

interlocked with no block break up with its neighbors when

optimization reached its local optimal solution. This shows

that if all blocks are placed in position for a large structure

like these, then the structure is interlocked.

One important property for this interlocking structure is

that, for each layer, the last glued two pieces of blocks is

the key to connected blocks in the same layer and layers

whose keys are covered by these connected blocks. If there

is a hole in the structure, connected blocks on one layer will

break into more than one group. This will generate more than

one key for the whole structure. If we want to keep only one

key for the whole structure, we need to guarantee another

layer covering them all, like the layer above the creeper’s

eyes. If there is no such cover layer, like the small spike

underneath the creeper’s mouth, it will create an extra key



(a) Original nine blocks set up.
We mainly focus on disassembly
which happens in red rectangle.

(b) Blocks escape process. Key
frames with blocks orientation are
showed in Fig. 14c-Fig. 14f.

(c) (d) (e) (f)

Fig. 14: Blocks with large gap between peg and hole can escape
from the fixed block which is supposed to be fully interlocked with
others.

for the whole structure. This property constrains the structure

to have only closed convex holes or open cave above layer

whose keys are not on the cave boundary.

D. Tolerance Stack-up and future work

Tolerance impacts greatly on assembly in the physical

world. If blocks are designed to be assembled tightly, the

dropping assembly process might get jammed. If we have a

loose tolerance, unwanted flexibility might cause interlocking

failure to be brought into the structure. We showed a failure

case in Fig. 14. In this one, large gap between peg and

hole grants blocks flexibility. If all this tolerance stack-up,

a path is opened in configuration space for other blocks to

disassemble from the fixed block.

Tolerance stack-up will also make our assembly process

pretty challenging. With the increase of block layers, tol-

erance will stack-up and increase structure flexibility. We

analyzed this flexibility on three layers blocks and five

layers blocks. One example is showed in Fig. 15. We

use PuzzleFlex to compute the minimal and maximal hole

distance between two neighboring blocks. We can see that

minimal hole distances are almost the same between these

two. However, with tolerance stacking up, the maximal hole

distance increased. If a new block is going to be dropped on

the top layer, its pegs may not be able to drop in between

these holes, or it may get jammed in assembly.

In future work, we need to consider the tolerance impact

in assembly. Break tolerance stack-up is important to get a

smooth assembly. Glue blocks that pass tolerance to the next

layer might be a good feature we can try in future work.

More simulation work also needs to be done in identifying

locations that accumulate tolerance.

VII. FUTURE WORK

This work proposes an interlocking model and a possible

block design that implements this model. We first plan to

design a layout algorithm that will automatically determine

the assembly number of the blocks. In addition to speeding

(a) Minimal hole
distance in 3 lay-
ers

(b) Maximal hole
distance in 3 lay-
ers

(c) Minimal hole
distance in 5 lay-
ers

(d) Maximal hole
distance in 5 lay-
ers

(e) Comparison of minimal and maximal hole distance between
different layers structure. Minimal hole distances are showed in solid
lines and maximal hole distances are showed in dashed lines. Distance
are measured in millimeters.

Fig. 15: Flexibility between blocks changes hole distance between
two neighboring blocks. In this case, structure flexibility will
increase with layers. And hole distance tolerance will increase with
structure flexibility.

up the assembly process, this will also allow us to optimize

the number of blocks needed for a structure, and only use

the number required for interlocking.

We also plan to formalize the relationship between peg

angle, tolerance, and interlocking. The Type B blocks have

a 45◦ joint, which could possibly be increased to reduce

the horizontal motion needed to insert the pegs; however,

this could reduce the effect of the interlock. We also see

from our analysis in Section VI that the tolerances of the

blocks can have an effect on interlocking, so we plan to

more rigorously study how the design choices of the blocks

affect our interlocking model.

Additionally, we show building with the robot arm as a

proof of concept, but would like to expand the capabilities

of building with the robot arm. This will be aided by the

development of the layout algorithm, and by more thoroughly

measuring the errors that occur during dropping.
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